【题目】一辆货车从甲地出发以50 km/h的速度匀速驶往乙地,行驶1 h后,一辆轿车从乙地出发沿同一条路匀速驶往甲地.轿车行驶0.8 h后两车相遇.图中折线ABC表示两车之间的距离y(km)与货车行驶时间x(h)的函数关系.
(1)甲乙两地之间的距离是__________ km,轿车的速度是_________ km/h;
(2)求线段BC所表示的函数表达式;
(3)在图中画出货车与轿车相遇后的y(km)与x(h)的函数图像.
【答案】 150 75
【解析】分析:(1)根据图形纵坐标直接得出甲、乙两地之间的距离,轿车的速度:(150-50) ÷0.8-50=75;(2) 设y=kx+b, 在图中,依次找出B点、C点的坐标,即可列出函数表达式,进求出BC的表达式;(3)货车与轿车相遇后,背向行驶,距离越来越远,三小时后,货车到达目的地,继而画出图象.
详解:(1)150,75.
(2)解:根据题意,C点坐标为(1.8,0),当x=1时,y=150-50=100,∴B点坐标为(1,100)
设线段BC所表示的y与x之间的函数表达式为y=kx+b.
因为y=kx+b的图像过点(1,100)与(1.8,0),
所以
解方程组得
线段BC所表示的y与x之间的函数表达式为y=-125x+225.
(3)图中线段CD即为所求.
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,AB=6,E是BC边的中点,F是CD边上的一点,且DF=2,若M、N分别是线段AD、AE上的动点,则MN+MF的最小值为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某服装店的一次性购进甲、乙两种童衣共100件进行销售,其中甲种童衣的进价为80元/件,售价为120元/件;乙种童衣的进价为100元/件,售价为150元/件。设购进甲种童衣的数量为(件),销售完这批童衣的总利润为(元)。
(1)请求出与之间的函数关系式(不用写出的取值范围);
(2)如果购进的甲种童衣的件数不少于乙种童衣件数的3倍,求购进甲种童衣多少件式,这批童衣销售完利润最多?最多可以获利多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在“母亲节”前期,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销售量大,店主决定将玫瑰每枝降价1元促销,降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍.
(1)求降价后每枝玫瑰的售价是多少元?
(2)根据销售情况,店主用不多于900元的资金再次购进两种鲜花共500枝,康乃馨进价为2元/枝,玫瑰进价为1.5元/枝,问至少购进玫瑰多少枝?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在数轴上点A表示-3,点B表示4.
(1)点A与点B之间的距离是 ;
(2)我们知道,在数轴上|a|表示数a所对应的点到原点的距离,你能说明在数轴上表示的意义吗?
(3)在数轴上点P表示的数为x,是否存在这样的点P,使2PA+PB=12?若存在,请求出相应的x;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】等腰△ABC中,∠BAC=120°,AB=AC=6,点D为边BC上一动点.将△ABD沿着AD对折到△AB′D.若△BB′D为直角三角形,则BD=___________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:矩形ABCD中,AB=4,BC=3,点M、N分别在边AB、CD上,直线MN交矩形对角线 AC于点E,将△AME沿直线MN翻折,点A落在点P处,且点P在射线CB上.
(1)如图1,当EP⊥BC时,求CN的长;
(2) 如图2,当EP⊥AC时,求AM的长;
(3) 请写出线段CP的长的取值范围,及当CP的长最大时MN的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程(m为常数)
(1)求证:不论m为何值,方程总有两个不相等的实数根;
(2)若方程有一个根是2,求m的值及方程的另一个根。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com