精英家教网 > 初中数学 > 题目详情

【题目】如图,在菱形ABCD中,对角线ACBD交于点O.过点CBD的平行线,过点DAC的平行线,两直线相交于点E

1)求证:四边形OCED是矩形;

2)若CE2DE3,求菱形ABCD的面积.

【答案】1)见解析;(2)菱形ABCD的面积为: 12

【解析】

1)欲证明四边形OCED是矩形,只需推知四边形OCED是平行四边形,且有一内角为90度即可;

2)由菱形的对角线互相垂直平分和菱形的面积公式解答.

1)证明:∵四边形ABCD是菱形,

ACBD

∴∠COD90°.

CEODDEOC

∴四边形OCED是平行四边形,

又∠COD90°,

∴平行四边形OCED是矩形;

2)由(1)知,平行四边形OCED是矩形,则CEOD2DEOC3

∵四边形ABCD是菱形,

AC2OC6BD2OD4

∴菱形ABCD的面积为:ACBD×6×412

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,ABC是⊙O的内接三角形,ABACBCA=65°,作CDAB,并与O相交于点D连接BD,则∠DBC的大小为

A. 15° B. 35° C. 25° D. 45°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,ABDCABAD,对角线ACBD交于点OAC平分BAD,过点CCEABAB的延长线于点E,连接OE

(1)求证:四边形ABCD是菱形;

(2)若ABBD=2,求OE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,反比例函数的图象与直线y=3x相交于点C,过直线上点A(13)ABx轴于点B,交反比例函数图象于点D,且AB=3BD.

(1)求反比例函数的表达式;

(2)求点C的坐标;

(3)y轴上确定一点M,使点MCD两点距离之和d=MC+MD最小,求点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点P(﹣1m)是双曲线y上的一个点,过点PPQx轴于点Q,连接POOPQ的面积为3

1)求m的值和双曲线对应的函数表达式;

2)若经过点P的一次函数ykx+bk≠0b≠0)的图象与x轴交于点A,与y交于点BPB2AB,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB6BC3动点P从点A出发,沿AC以每秒4个单位长度的速度向终点C运动.过点P(不与点AC重合)作EFAC,交ABBC于点E,交ADDC于点F,以EF为边向右作正方形EFGH设点P的运动时间为t秒.

1)①AC   .②当点FAD上时,用含t的代数式直接表示线段PF的长   

2)当点F与点D重合时,求t的值.

3)设方形EFGH的周长为l,求lt之间的函数关系式.

4)直接写出对角线AC所在的直线将正方形EFGH分成两部分图形的面积比为12t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点AB分别在x轴和y轴上,且,点C的坐标是ABOC相交于点G.点PO出发以每秒1个单位的速度从O运动到C,过P作直线分别交OAOBACBCEF.解答下列问题:

1)直接写出点G的坐标;

2)若点P运动的时间为t,直线EF在四边形OACB内扫过的面积为s,请求出st的函数关系式;并求出当t为何值时,直线EF平分四边形OACB的面积;

3)设线段OC的中点为QP运动的时间为t,求当t为何值时,为直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】八(2)班组织了一次经典诵读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):

7

8

9

7

10

10

9

10

10

10

10

8

7

9

8

10

10

9

10

9

1)甲队成绩的中位数是   分,乙队成绩的众数是   分;

2)计算乙队的平均成绩和方差;

3)已知甲队成绩的方差是1.4,则成绩较为整齐的是   队.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在OAB中,O为坐标原点,横、纵轴的单位长度相同,AB的坐标分别为(86)(160),点P沿OA边从点O开始向终点A运动,速度每秒1个单位,点Q沿BO边从B点开始向终点O运动,速度每秒2个单位,如果PQ同时出发,用t()表示移动时间,当这两点中有一点到达自己的终点时,另一点也停止运动。求:

1)几秒时PQAB.

2)设OPQ的面积为y,求yt的函数关系式.

3OPQOAB能否相似?若能,求出点P的坐标,若不能,试说明理由.

查看答案和解析>>

同步练习册答案