分析 (1)连接OC,可证明OC∥AD,再结合OC=OA,可证明∠DAC=∠ACO=∠CAO,可证得结论;
(2)连接MA,可证明△MBN∽△MCB,可得BM2=MN•MC,在Rt△ABM中,由勾股定理可求得BM,可求得答案.
解答 (1)证明:
如图1,连接OC,![]()
∵CD为⊙O的切线,
∴OC⊥CD,
又AD⊥CD,
∴AD∥OC,
∴∠DAC=∠ACO,
又OA=OC,
∴∠CAO=∠ACO,
∴∠DAC=∠CAO,
∴AC平分∠DAB;
(2)解:
如图2,连接MA,![]()
∵点M是弧AB的中点,
∴$\widehat{AM}$=$\widehat{BM}$,
∴∠ACM=∠BCM,
∵∠ACM=∠ABM,
∴∠BCM=∠ABM,
∵∠BMC=∠BMN,
∴△MBN∽△MCB,
∴$\frac{BM}{MC}$=$\frac{MN}{BM}$,
∴BM2=MC•MN
∵AB是⊙O的直径,$\widehat{AM}$=$\widehat{BM}$,
∴∠AMB=90°,AM=BM,
∵AB=2R,
∴BM=$\frac{2R}{\sqrt{2}}$=$\sqrt{2}$R,
∴MC•MN=BM2=2R2.
点评 本题主要考查切线的性质和相似三角形的判定和性质,在(1)中利用切线证明AD∥OC是解题的关键,在(2)中证明△MBN∽△MCB,从而找到BM和MC•MN的关系是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 2 | B. | 4 | C. | 8 | D. | 9 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com