精英家教网 > 初中数学 > 题目详情

如图,△ABC中,AD平分∠BAC,CD=CE,式子AB•CD=AC•BD成立吗?若成立,给出证明;若不成立,说明理由.

解:式子AB•CD=AC•BD成立.
∵CD=CE
∴∠CDE=∠CED
∵∠CDE+∠ADB=180°,∠CED+∠AEC=180°
∴∠ADB=∠AEC
∵∠BAD=∠CAE
∴△ADB∽△AEC

∴AB•CE=AC•BD
∴AB•CD=AC•BD.
分析:已知CD=CE,因此只需判断AB•CE=AC•BD是否成立即可.可根据已知条件证△ADB与△AEC是否相似,若两三角形相似,则所求的式子成立,反之则不成立.
点评:此题主要考查的是相似三角形的判定和性质.利用图形的有利条件:等角的补角相等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案