精英家教网 > 初中数学 > 题目详情
已知关于x的一元二次方程
1
4
x2-2x+a(x+a)=0的两个实数根为x1,x2,若y=x1+x2+
1
2
x1x2

(1)当a≥0时,求y的取值范围;
(2)当a≤-2时,比较y与-a2+6a-4的大小,并说明理由.
分析:(1)用根的判别式确定a的取值范围,根据根与系数的关系用a表示y,确定y的取值范围.
(2)根据a的取值范围确定y及代数式-a2+6a-4的取值范围,可比较其大小.
解答:解:(1)由
1
4
x2-2x+a(x+a)=0得,
1
4
x2+(a-2)x+a2=0
△=(a-2)2-4×
1
4
×a2
=-4a+4
∵方程有两个实数根,
∴-4a+4≥0.
∴a≤1
∵a≥0
∴0≤a≤1
∴y=x1+x2+
1
2
x1x2

=-4a+8+a
=-3a+8
∵-3≤0,
∴y随a的增大而减小
当a=0时,y=8;a=1时,y=5
∴5≤y≤8.
(2)由(1)得a≤1,又a≤-2,
∴a≤-2
∴y=x1+x2+
1
2
x1x2

=-4a+8-a
=-5a+8
当a=-2时,y=18;
∵-3≤0
∴y随a的增大而减小.
∴当a≤-2时,y≥18
又∵-a2+6a-4=-(a-3)2+5≤5
而18>5
∴当a≤-2时,y>-a2+6a-4
点评:考查用根的判别式求取值范围,一元二次方程根与系数的关系以及一次函数的性质的综合运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知关于x的一元二次x2+(2k-3)x+k2=0的两个实数根x1,x2且x1+x2=x1x2,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的一元二次2x2-(2m2-1)x-m-4=0有一个实数根为
32

(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的一元二次x2-6x+k+1=0的两个实数根x1,x2
1
x1
+
1
x2
=1
,则k的值是(  )
A、8B、-7C、6D、5

查看答案和解析>>

科目:初中数学 来源:第23章《一元二次方程》中考题集(23):23.3 实践与探索(解析版) 题型:解答题

已知关于x的一元二次2x2-(2m2-1)x-m-4=0有一个实数根为
(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

科目:初中数学 来源:2007年全国中考数学试题汇编《一元二次方程》(04)(解析版) 题型:解答题

(2007•汕头)已知关于x的一元二次2x2-(2m2-1)x-m-4=0有一个实数根为
(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

同步练习册答案