如图,已知一次函数y=0.5x+2的图象与x轴交于点A,与二次函数y=ax2+bx+c的图象交于y轴上的一点B,二次函数y=ax2+bx+c的图象与x轴只有唯一的交点C,且OC=2.
(1)求二次函数y=ax2+bx+c的解析式;
(2)设一次函数y=0.5x+2的图象与二次函数y=ax2+bx+c的图象的另一交点为D,已知P为x轴上的一个动点,且△PBD为直角三角形,求点P的坐标.
解:(1)∵y=0.5x+2交x轴于点A,
∴0=0.5x+2,
∴x=﹣4,
与y轴交于点B,
∵x=0,
∴y=2
∴B点坐标为:(0,2),
∴A(﹣4,0),B(0,2),
∵二次函数y=ax2+bx+c的图象与x轴只有唯一的交点C,且OC=2
∴可设二次函数y=a(x﹣2)2,
把B(0,2)代入得:a=0.5
∴二次函数的解析式:y=0.5x2﹣2x+2;
(2)(Ⅰ)当B为直角顶点时,过B作BP1⊥AD交x轴于P1点由Rt△AOB∽Rt△BOP1∴=,
∴=,
得:OP1=1,
∴P1(1,0),
(Ⅱ)作P2D⊥BD,连接BP2,
将y=0.5x+2与y=0.5x2﹣2x+2联立求出两函数交点坐标:D点坐标为:(5,4.5),
则AD=,
当D为直角顶点时
∵∠DAP2=∠BAO,∠BOA=∠ADP2,
∴△ABO∽△AP2D,
∴=,
=,
解得:AP2=11.25,
则OP2=11.25﹣4=7.25,
故P2点坐标为(7.25,0);
(Ⅲ)当P为直角顶点时,过点D作DE⊥x轴于点E,设P3(a,0)
则由Rt△OBP3∽Rt△EP3D
得:,
∴,
∵方程无解,
∴点P3不存在,
∴点P的坐标为:P1(1,0)和P2(7.25,0).
科目:初中数学 来源: 题型:
a | x |
查看答案和解析>>
科目:初中数学 来源: 题型:
8 | x |
查看答案和解析>>
科目:初中数学 来源: 题型:
m | x |
查看答案和解析>>
科目:初中数学 来源: 题型:
k2 | x |
查看答案和解析>>
科目:初中数学 来源: 题型:
4-2m |
x |
BC |
AB |
1 |
3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com