精英家教网 > 初中数学 > 题目详情

【题目】如图所示,函数y1kx+b的图象与函数x0)的图象交于Aa23)、B(﹣3a)两点.

1)求函数y1y2的表达式;

2)过AAMy轴,过BBNx轴,试问在线段AB上是否存在点P,使SPAM3SPBN?若存在,请求出P点坐标;若不存在,请说明理由.

【答案】1;(2)存在,P.

【解析】

1)把AB两点坐标代入直线AB解析式可求得AB两点的坐标,再把B点坐标代入反比例函数解析式可求得k,可求得函数y2的表达式;

2)设出P点坐标为(xx4),根据三角形的面积关系可得到关于x的方程,可求得P点坐标.

解:(1)∵AB两点在函数x0)的图象上,

3a2)=﹣3am

a1m=﹣3

A(﹣13),B(﹣31),

∵函数y1kx+b的图象过AB点,

解得k1b4

y1x+4y2

2)由(1)知A(﹣13),B(﹣31),

AMBN1

P点在线段AB上,

∴设P点坐标为(xx+4),其中﹣1≤x≤3

PAM的距离为hA3﹣(x+4)=﹣x1PBN的距离为hB3+x

SPBNBNhB×1×3+x)=x+3),

SPAMAMhA×1×(﹣x1)=﹣x+1),

SPAM3SPBN

∴﹣x+1)=x+3),解得x=﹣,且﹣1≤x≤3,符合条件,

P(﹣),

综上可知存在满足条件的点P,其坐标为(﹣).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示的抛物线是二次函数yax2+bx+c(a0)的图象,则下列结论:b+2a0抛物线与x轴的另一个交点为(40)a+cb(1y1)(y2)是抛物线上的两点,则y1y2.其中正确的结论有(  )

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,ABACBC6EAC边上的点且AE2EC,点DBC边上且满足BDDE,设BDySABCx,则yx的函数关系式为(  )

A.yx2+B.yx2+

C.yx2+2D.yx2+2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,扇形OAB中,∠AOB=60°,扇形半径为4,点C上,CDOA,垂足为点D,当△OCD的面积最大时,图中阴影部分的面积为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线的图象与x轴交于A、B两点,点A在点B的左边,与y轴交于点C,点D是抛物线的顶点,且A(﹣6,0),D(﹣2,﹣8).

(1)求抛物线的解析式;

(2)点P是直线AC下方的抛物线上一动点,不与点A、C重合,求过点Px轴的垂线交于AC于点E,求线段PE的最大值及P点坐标;

(3)在抛物线的对称轴上足否存在点M,使得ACM为直角三角形?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,菱形ABCD位于平面直角坐标系中,抛物线yax2+bx+c经过菱形的三个顶点ABC,已知A(﹣30)、B0,﹣4).

1)求抛物线解析式;

2)线段BD上有一动点E,过点Ey轴的平行线,交BC于点F,若SBOD4SEBF,求点E的坐标;

3)抛物线的对称轴上是否存在点P,使△BPD是以BD为斜边的直角三角形?如果存在,求出点P的坐标;如果不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=﹣x+3的图象与反比例函数yk0)的图象交于AB两点,过A点作x轴的垂线,垂足为M,△AOM面积为2

1)求反比例函数的解析式;

2)在y轴上求一点P,使PA+PB的值最小,并求出其最小值和P点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.

(1)求证:AB=AF;

(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形OABC中,点O为原点,点A的坐标为(08),点C的坐标为(60).抛物线y=﹣x2+bx+c经过点AC,与AB交于点D

(1)求抛物线的函数解析式;

(2)P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQCP,连接PQ,设CPm,△CPQ的面积为S

S关于m的函数表达式;

S最大时,在抛物线y=﹣x2+bx+c的对称轴l上,若存在点F,使△DFQ为直角三角形,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案