【题目】如图所示,函数y1=kx+b的图象与函数(x<0)的图象交于A(a﹣2,3)、B(﹣3,a)两点.
(1)求函数y1、y2的表达式;
(2)过A作AM⊥y轴,过B作BN⊥x轴,试问在线段AB上是否存在点P,使S△PAM=3S△PBN?若存在,请求出P点坐标;若不存在,请说明理由.
【答案】(1),;(2)存在,P.
【解析】
(1)把A、B两点坐标代入直线AB解析式可求得A、B两点的坐标,再把B点坐标代入反比例函数解析式可求得k,可求得函数y2的表达式;
(2)设出P点坐标为(x,x+4),根据三角形的面积关系可得到关于x的方程,可求得P点坐标.
解:(1)∵A、B两点在函数(x<0)的图象上,
∴3(a﹣2)=﹣3a=m,
∴a=1,m=﹣3,
∴A(﹣1,3),B(﹣3,1),
∵函数y1=kx+b的图象过A、B点,
∴,
解得k=1,b=4
∴y1=x+4,y2=;
(2)由(1)知A(﹣1,3),B(﹣3,1),
∴AM=BN=1,
∵P点在线段AB上,
∴设P点坐标为(x,x+4),其中﹣1≤x≤﹣3,
则P到AM的距离为hA=3﹣(x+4)=﹣x﹣1,P到BN的距离为hB=3+x,
∴S△PBN=BNhB=×1×(3+x)=(x+3),
S△PAM=AMhA=×1×(﹣x﹣1)=﹣(x+1),
∵S△PAM=3S△PBN,
∴﹣(x+1)=(x+3),解得x=﹣,且﹣1≤x≤﹣3,符合条件,
∴P(﹣,),
综上可知存在满足条件的点P,其坐标为(﹣,).
科目:初中数学 来源: 题型:
【题目】如图所示的抛物线是二次函数y=ax2+bx+c(a≠0)的图象,则下列结论:①b+2a=0;②抛物线与x轴的另一个交点为(4,0);③a+c>b;④若(﹣1,y1),(,y2)是抛物线上的两点,则y1<y2.其中正确的结论有( )
A. 4个B. 3个C. 2个D. 1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,BC=6,E为AC边上的点且AE=2EC,点D在BC边上且满足BD=DE,设BD=y,S△ABC=x,则y与x的函数关系式为( )
A.y=x2+B.y=x2+
C.y=x2+2D.y=x2+2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,扇形OAB中,∠AOB=60°,扇形半径为4,点C在上,CD⊥OA,垂足为点D,当△OCD的面积最大时,图中阴影部分的面积为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线的图象与x轴交于A、B两点,点A在点B的左边,与y轴交于点C,点D是抛物线的顶点,且A(﹣6,0),D(﹣2,﹣8).
(1)求抛物线的解析式;
(2)点P是直线AC下方的抛物线上一动点,不与点A、C重合,求过点P作x轴的垂线交于AC于点E,求线段PE的最大值及P点坐标;
(3)在抛物线的对称轴上足否存在点M,使得△ACM为直角三角形?若存在,求出点M的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,菱形ABCD位于平面直角坐标系中,抛物线y=ax2+bx+c经过菱形的三个顶点A、B、C,已知A(﹣3,0)、B(0,﹣4).
(1)求抛物线解析式;
(2)线段BD上有一动点E,过点E作y轴的平行线,交BC于点F,若S△BOD=4S△EBF,求点E的坐标;
(3)抛物线的对称轴上是否存在点P,使△BPD是以BD为斜边的直角三角形?如果存在,求出点P的坐标;如果不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=﹣x+3的图象与反比例函数y=(k>0)的图象交于A,B两点,过A点作x轴的垂线,垂足为M,△AOM面积为2.
(1)求反比例函数的解析式;
(2)在y轴上求一点P,使PA+PB的值最小,并求出其最小值和P点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.
(1)求证:AB=AF;
(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线y=﹣x2+bx+c经过点A、C,与AB交于点D.
(1)求抛物线的函数解析式;
(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.
①求S关于m的函数表达式;
②当S最大时,在抛物线y=﹣x2+bx+c的对称轴l上,若存在点F,使△DFQ为直角三角形,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com