【题目】下列各组数中,不是勾股数的是( )
A. 0.3,0.4,0.5 B. 5,12,13 C. 10, 24,26 D. 7,24,25
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,我们定义直线为抛物线(、、为常数,)的“梦想直线”;有一个顶点在抛物线上,另一个顶点在轴上的三角形为其“梦想三角形”.
已知抛物线与其“梦想直线”交于、两点(点在点的左侧),与轴负半轴交于点.
(1)填空:该抛物线的“梦想直线”的解析式为 ,点的坐标为 ,点的坐标为 ;
(2)如图,点为线段上一动点,将以所在直线为对称轴翻折,点的对称点为,若为该抛物线的“梦想三角形”,求点的坐标;
(3)当点在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点,使得以点、、、为顶点的四边形为平行四边形?若存在,请直接写出点、的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司开发出一款新的节能产品,该产品的成本价位元/件,该产品在正式投放市场前通过代销点进行了为期一个月(天)的试销售,售价为元/件.工作人员对销售情况进行了跟踪记录,并将记录情况绘制成图象,图中的折线表示日销售量(件)与销售时间(天)之间的函数关系,已知线段表示的函数关系中,时间每增加天,日销售量减少件.
⑴第天的日销售量是 件,日销售利润是 元;
⑵求与之间的函数关系式,并写出的取值范围;
⑶日销售利润不低于元的天数共有多少天?试销售期间,日销售最大利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为1000m2的空地进行绿化,一部分种草,剩余部分栽花,设种草部分的面积为x(m2),种草所需费用(元)与x(m2)的函数关系式为,其图象如图所示:栽花所需费用(元)与x(m2)的函数关系式为(0≤x≤1000).
(1)请直接写出、和b的值;
(2)设这块1000m2空地的绿化总费用为W(元),请利用W与x的函数关系式,求出绿化总费用W的最大值;
(3)若种草部分的面积不少于700m2,栽花部分的面积不少于100m2,请求出绿化总费用W的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,AB=3,BC=5,以点B的圆心,以任意长为半径作弧,分别交BA、BC于点P、Q,再分别以P、Q为圆心,以大于 PQ的长为半径作弧,两弧在∠ABC内交于点M,连接BM并延长交AD于点E,则DE的长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】今年四月份,某校在孝感市争创“全国文明城市” 活动中,组织全体学生参加了“弘扬孝感文化,争做文明学生”知识竞赛,赛后随机抽取了部分参赛学生的成绩,按得分划分成 六个等级,并绘制成如下两幅不完整的统计图表.
请根据图表提供的信息,解答下列问题:
(1)本次抽样调查样本容量为 ,表中: , ;扇形统计图中, 等级对应的圆心角 等于 度;(4分=1分+1分+1分)
(2)该校决定从本次抽取的 等级学生(记为甲、乙、丙、丁)中,随机选择 名成为学校文明宣讲志愿者,请你用列表法或画树状图的方法,求恰好抽到甲和乙的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点O是线段AB上的一点,OA=OC,OD平分∠AOC交AC于点D,OF平分∠COB,CF⊥OF于点F.
(1)求证:四边形CDOF是矩形;
(2)当∠AOC多少度时,四边形CDOF是正方形?并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com