精英家教网 > 初中数学 > 题目详情

如图,在正方形ABCD中,AB=4cm,动点M从A出发,以1cm/s的速度沿折线AB﹣BC运动,同时动点N从A出发,以2cm/s的速度沿折线AD﹣DC﹣CB运动,M,N第一次相遇时同时停止运动.设△AMN的面积为y,运动时间为x,则下列图象中能大致反映y与x的函数关系的是(  )

A.    B.    C.    D.


C

【解析】

试题分析:首先根据题意,运用分类讨论的数学思想求出y关于时间x的函数关系式,问题即可解决.

点评:该命题主要考查了动点问题的函数图象及其应用问题;解题的关键是准确把握题意,运用分类讨论的数学思想正确写出函数关系式.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:


向一个图案如下图所示的正六边形靶子上随意抛一枚飞镖,则飞镖插不落在阴影区域的概率为【    】

A.       B.        C.        D.

查看答案和解析>>

科目:初中数学 来源: 题型:


 如图,在Rt△ABC中,∠C=900,∠B=300,BC=,点D是BC边上一动点(不与点B、C重合),过点D作DE⊥BC交AB边于点E,将∠B沿直线DE翻折,点B落在射线BC上的点F处,当△AEF为等腰三角形时,BD的长为        

查看答案和解析>>

科目:初中数学 来源: 题型:


已知,大正方形的边长为4,小正方形的边长为2,状态如图所示.大正方形固定不动,把小正方形以的速度向大正方形的内部沿直线平移,设平移的时间为秒,两个正方形重叠部分的面积为,完成下列问题:

(1).用的式子表示,要求画出相应的图形,表明的范围;

(2).当,求重叠部分的面积

(3).当,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:


 如图,在Rt△ABC中,∠C=90°,∠A=45°,AB=2.将△ABC绕顶点A顺时针方向旋转至△AB′C′的位置,B,A,C′三点共线,则线段BC扫过的区域面积为      

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,在矩形ABCD中,点P在边CD上,且与C、D不重合,过点A作AP的垂线与CB的延长线相交于点Q,连接PQ,M为PQ中点.

(1)求证:△ADP∽△ABQ;

(2)若AD=10,AB=20,点P在边CD上运动,设CP=x,BM2=y,求y与x的函数关系式,并求线段BM的最小值;

(3)若AD= a,AB=,DP=8,随着a的大小的变化,点M的位置也在变化.当点M落在矩形ABCD内部时,求a的取值范围。

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,已知抛物线y=ax2+bx(a≠0)经过A(3,0)、B(4,)两点。

(1)求抛物线的解析式;

(2)将抛物线向下平移m个单位长度后,得到的抛物线与直线OB只有两个公共点D,求m的取值范围。

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,在平面直角坐标系中,四边形ABCO是梯形,其中A(4,0),B(3,),C(1,),动点P从点A以每秒1个单位的速度向点O运动,动点Q也同时从点A沿A→B→ C→O的线路以每秒2个单位的速度向点O运动,当点P到达A点时,点Q也随之停止,设点P、Q运动的时间为t(秒)。求△OPQ的面积S与时间t的函数关系式。

查看答案和解析>>

科目:初中数学 来源: 题型:


 在平面直角坐标系中,已知抛物线(a,c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,﹣1),C的坐标为(﹣4,3),直角顶点B在第二象限。

(1)如图,若该抛物线过A,B两点,求该抛物线的函数表达式;

(2)平移(1)中的抛物线,使顶点P在直线AC上滑动,且与AC交于另一点Q,若点M在直线AC下方,且为平移前(1)中的抛物线上的点,当以M、P、Q三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M的坐标。

查看答案和解析>>

同步练习册答案