精英家教网 > 初中数学 > 题目详情

已知,大正方形的边长为4,小正方形的边长为2,状态如图所示.大正方形固定不动,把小正方形以的速度向大正方形的内部沿直线平移,设平移的时间为秒,两个正方形重叠部分的面积为,完成下列问题:

(1).用的式子表示,要求画出相应的图形,表明的范围;

(2).当,求重叠部分的面积

(3).当,求的值.


(1).如图1,当如图2,当如图3,当

(2).当

答:重叠部分的面积为3

(3).当     

答:的值为1.8或4.2


练习册系列答案
相关习题

科目:初中数学 来源: 题型:


如图,已知抛物线y1=﹣2x2+2,直线y2=﹣2x+2,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较大值记为M;若y1=y2,记M=y1=y2。例如:当x=﹣1时,y1=0,y2=4,y1<y2,此时M=4。下列判断:

①当x<0时,y1>y2

②当x>0时,x值越大,M值越小;

③当x≥0时,使得M大于2的x值不存在;

④使得M=1的x值是

其中正确的有【    】

  A.1个  B.2个  C.3个  D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,已知⊙B与△ABD的边AD相切于点C,AC=,⊙B的半径为2,当⊙A与⊙B相切时,⊙A的半径是【   】

      1      3      2或4        1或3

查看答案和解析>>

科目:初中数学 来源: 题型:


已知A,B,C为⊙O上相邻的三个六等分点,点E在劣弧AC上(不与A,B,C重合),EF

为⊙O的直径,将⊙O沿EF折叠,使点A与A′重合,点B与B′重合,连接EB′,EC,EA′。设EB′=b,EC=c,EA′=p。试探究b,c,p三者的数量关系。

查看答案和解析>>

科目:初中数学 来源: 题型:


定义:如果一个y与x的函数图象经过平移后能与某反比例函数的图象重合,那么称这个函数是y与x的“反比例平移函数”.例如:的图象向左平移2个单位,再向下平移1个单位得到的图象,则是y与x的“反比例平移函数”.

(1)若矩形的两边分别是2cm、3cm,当这两边分别增加x(cm)、y(cm)后,得到的新矩形的面积为8cm2,求y与x的函数表达式,并判断这个函数是否为“反比例平移函数”.

(2)如图,在平面直角坐标系中,点O为原点,矩形OABC的顶点A、C的坐标分别为(9,0)、(0,3).点D是OA的中点,连接OB、CD交于点E,“反比例平移函数”的图象经过B、E两点.则这个“反比例平移函数”的表达式为            ;这个“反比例平移函数”的图象经过适当的变换与某一个反比例函数的图象重合,请写出这个反比例函数的表达式.

(3)在(2)的条件下,已知过线段BE中点的一条直线l交这个“反比例平移函数”图象于P、Q两点(P在Q的右侧),若B、E、P、Q为顶点组成的四边形面积为16,请求出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:


根据要求,解答下列问题:

(1)已知直线l1的函数表达式为,直接写出:①过原点且与l1垂直的直线l2的函数表达式;②过点(1,0)且与l1垂直的直线l2的函数表达式;

(2)如图,过点(1,0)的直线l4向上的方向与x轴的正方向所成的角为600,①求直线l4的函数表达式;②把直线l4绕点(1,0)按逆时针方向旋转900得到的直线l5,求直线l5的函数表达式;

(3)分别观察(1)(2)中的两个函数表达式,请猜想:当两直线垂直时,它们的函数表达式中自变量的系数之间有何关系?请根据猜想结论直接写出过点(1,1)且与直线垂直的直线l6的函数表达式。

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,在正方形ABCD中,AB=4cm,动点M从A出发,以1cm/s的速度沿折线AB﹣BC运动,同时动点N从A出发,以2cm/s的速度沿折线AD﹣DC﹣CB运动,M,N第一次相遇时同时停止运动.设△AMN的面积为y,运动时间为x,则下列图象中能大致反映y与x的函数关系的是(  )

A.    B.    C.    D.

查看答案和解析>>

科目:初中数学 来源: 题型:


 如图,平面之间坐标系中,Rt△ABC的∠ACB=90º,∠CAB=30º,直角边BC在x轴正半轴上滑动,点C的坐标为(t,0),直角边AC=,经过O,C两点做抛物线(a为常数,a>0),该抛物线与斜边AB交于点E,直线OA:y2=kx(k为常数,k>0)

(1)填空:用含t的代数式表示点A的坐标及k的值:A       ,k=       

(2)随着三角板的滑动,当a=1时:

①请你验证:抛物线的顶点在函数的图象上;

②当三角板滑至点E为AB的中点时,求t的值。

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,在平面直角坐标系xOy中,点P(x,y)是抛物线上的一个动点,抛物线的对称轴与x轴交于点D,经过点P的直线PE与y轴交于点E,是否存在△OPE与△OPD全等?若存在,请求出直线PE的解析式;若不存在,请说明理由。

查看答案和解析>>

同步练习册答案