根据要求,解答下列问题:
(1)已知直线l1的函数表达式为
,直接写出:①过原点且与l1垂直的直线l2的函数表达式;②过点(1,0)且与l1垂直的直线l2的函数表达式;
(2)如图,过点(1,0)的直线l4向上的方
向与x轴的正方
向所成的角为600,①求直线l4的函数表达式;②把直线l4绕点(1,0)按逆时针方向旋转900得到的直线l5,求直线l5的函数表达式;
(3)分别观察(1)(2)中的两个函数表达式,请猜想:当两直线垂直时,它们的函数表达式中自变量的系数之间有何关系?请根据猜想结论直接写出过点(1,1)且与直线
垂直的直线l6的函数表达式。
![]()
(1)①
。
②
。
![]()
(2)①设直线l4的函数表达式为
(k1≠0),
![]()
②∵l4与l5的夹角是为900,∴l5与x轴的夹角是为300。
设l5的解析式为
(k2≠0),
∵直线l5与x轴的正方向所成的角为钝角,∴k2=-tan300=
。
又∵直线l5经过点(1,0),∴
,即
。
∴直线l5的函数表达式为
。
(3)通过观察(1)(2)中的两个函数表达式可知,当两直线互相垂直时,它们的函数表达式中
自变量的系数互为负倒数关系,
∴过点(1,1)且与直线
垂直的直线l6的函数表达式为
。
【考点】一次函数综合题,旋转问题,探索规律题(图形的变化类),待定系数法的应用,直线上点的坐标与方程的关系,锐角三角函数定义,特殊角的三角函数值。
![]()
科目:初中数学 来源: 题型:
若关于x的一元二次
方程
有实数根x1,x2,且x1≠x2,有下列结论:
①x1=1,x2=2; ②
;
③二次函数y=
的图象与x轴交点的坐标
为
(1,0)和(2,0)。
其中,正确结论的个数是【 】
A.0 B.1 C.2 D.3
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,已知l1∥l2∥l3,相邻两条平行直线间的距离相等,若Rt△ABC的三个项点分别在这三条平行直线上,且∠A
CB=90°,∠ABC=30°,则cosα的值是【 】
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
定义:P、Q分别是两条线段a和b上任意一点,线段PQ长度的最小值叫做线段与线段的距离.
已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角系中四点.
(1)根据上述定义,当m=2,n
=2时,如图1,线段BC与线段OA的距离是_____,
当m=5,n=2时,如图2,线段BC与线段OA的距离(即线段AB的长)为______
![]()
![]()
![]()
![]()
![]()
![]()
(2)如图3,若点B落在圆心为A,半径为2的圆上,线段BC与线段OA的距离记为d,求d关于m的函数解析式.
(3)当m的值变化时,动线段BC与线段OA的距离始终为2,线段BC的中点为M.
①求出点M随线段BC运动所围成的封闭图形的周长;
②点D的坐标为(0,2),m≥0,n≥0,作MH⊥x轴,垂足为H,是否存在m的值,使以A、M、H为顶点的三角形与△AOD相似,若存在,求出m的值;若不存在,请说明理由.
![]()
![]()
![]()
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
已知,大正方形的边长为4
,小正方形的边长为2
,状态如图所示.大正方形固定不动,把小正方形以
的速度向大正方形的内部沿直线平移,设平移的时间为
秒,两个正方形重叠部分的面积为![]()
,完成下列问题:
(1).用
含
的式子表示
,要求画出相应的图形,表明
的范围;
(2).当
,求重叠部分的面积
;
(3).当![]()
,求
的值.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,正六边形的边长为π,半径是1的⊙O从与AB相切于点D的位置出发,在正六边形外部按顺时针方向沿正六边形滚动,又回
到与AB相切于点D的位置,则⊙O自转了【 】
![]()
A.4周 B.5周 C.6周 D.7周
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在矩形ABCD中,点P在边CD上,且与C、D不重合,过点A作AP的垂线与CB的延长线相交于点Q,连接PQ,M为PQ中点.
(1)求证:△ADP∽△ABQ;
(2)若AD=10,AB=20,点P在边CD上运动,设CP=x,BM2=y,求y与x的函数关系式,并求线段BM的最小值;
(3)若AD= a,AB=
,DP=8,随着a的大小的变化,点M的位置也在变化.当点M落在矩形ABCD内部时,求a的取值范围。
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,菱形ABCD的边长为2,∠A=
,动点P从点B出发,沿B-C-D的路线向点D运动。设△ABP的面积为y (B、P两点重合时,△ABP的面积可以看做0),点P运动的路程为x,则y与x之间函数关系的
图像大致为【 】
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,∠MON=90°,A、B分别是OM、ON上的点,OB=4.点C是线段AB的中点,将线段AC以点A为旋转中心,沿顺时针方向旋转90°,得到线段AD,过点B作ON的垂线![]()
.
(1)当
点D恰好落在垂线![]()
上时,求OA的长;
(2)过点D作DE⊥OM于点E,将(1)问中的△AOB以每秒2个单位的速度沿射线OM方向平移,记平移中的△AOB为△![]()
,当点O′与点E重合时停止平移.设平移的时间为t秒,△![]()
与△DAE重叠部分的面积为S,请直接写出S与t之间的函数关系式以及自变量t的取值范围;
(3)在(2)问的平移过程中,若![]()
与线段![]()
交于点P,连接![]()
,![]()
,![]()
,是否存在这样的t,使△![]()
是等腰三角形?若存在,求出t的值;若不存在,请说明理由.
![]()
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com