精英家教网 > 初中数学 > 题目详情

如图,已知l1∥l2∥l3,相邻两条平行直线间的距离相等,若Rt△ABC的三个项点分别在这三条平行直线上,且∠ACB=90°,∠ABC=30°,则cosα的值是【    】

A.           B.           C.         D.


D。

【考点】平行线的性质,相似三角形的判定和性质,勾股定理,锐角三角函数定义,特殊角的三角函数值。

【分析】如图,分别过点C作DE⊥l2, DE与l1交于点D,DE与l3交于点E,

            

故选D。


练习册系列答案
相关习题

科目:初中数学 来源: 题型:


教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系,直至水温降至20℃,饮水机关机。饮水机关机后即刻自动开机,重复上述自动程序。若在水温为20℃时,接通电源后,水温y(℃)和时间(min)的关系如图,为了在下午第一节下课时(14:30)能喝到健康卫生和水温适中的水(水沸腾后水温在20℃和50℃之间,含20℃和50℃),则接通电源的时间最晚是当天下午的         之间。

查看答案和解析>>

科目:初中数学 来源: 题型:


 如图,已知△ABC中,AB=AC,∠ADB=∠AEC,那么图中有     对全等三角形。

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,五边形ABCDE中,AB⊥BC,AE∥CD,∠A=∠E=135°,AB=AE=2,DE=4,则五边形ABCDE的面积等于     

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,已知⊙B与△ABD的边AD相切于点C,AC=,⊙B的半径为2,当⊙A与⊙B相切时,⊙A的半径是【   】

      1      3      2或4        1或3

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,A,P,B,C是⊙O上的四个点,∠APC=∠BPC=60°,过点A作⊙O的切线交BP的延长线于点D.

(1)求证:△ADP∽△BDA;

(2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论;

(3)若AD=2,PD=1,求线段BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:


已知A,B,C为⊙O上相邻的三个六等分点,点E在劣弧AC上(不与A,B,C重合),EF

为⊙O的直径,将⊙O沿EF折叠,使点A与A′重合,点B与B′重合,连接EB′,EC,EA′。设EB′=b,EC=c,EA′=p。试探究b,c,p三者的数量关系。

查看答案和解析>>

科目:初中数学 来源: 题型:


根据要求,解答下列问题:

(1)已知直线l1的函数表达式为,直接写出:①过原点且与l1垂直的直线l2的函数表达式;②过点(1,0)且与l1垂直的直线l2的函数表达式;

(2)如图,过点(1,0)的直线l4向上的方向与x轴的正方向所成的角为600,①求直线l4的函数表达式;②把直线l4绕点(1,0)按逆时针方向旋转900得到的直线l5,求直线l5的函数表达式;

(3)分别观察(1)(2)中的两个函数表达式,请猜想:当两直线垂直时,它们的函数表达式中自变量的系数之间有何关系?请根据猜想结论直接写出过点(1,1)且与直线垂直的直线l6的函数表达式。

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,正方形ABCD的边长是4,点P是边CD上一点,连接PA,将线段PA绕点P逆时针旋转90°得到线段PE,在边AD延长线上取点F,使DF=DP,连接EF,CF路。

(1)求证:四边形PCFE是平行四边形;

(2)当点P在边CD上运动时,四边形PCFE的面积是否有最大值?若有,请求出面积的最大值及此时CP长;若没有,请说明理由。

查看答案和解析>>

同步练习册答案