精英家教网 > 初中数学 > 题目详情

定义:P、Q分别是两条线段a和b上任意一点,线段PQ长度的最小值叫做线段与线段的距离.

已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角系中四点.

(1)根据上述定义,当m=2,n=2时,如图1,线段BC与线段OA的距离是_____,

当m=5,n=2时,如图2,线段BC与线段OA的距离(即线段AB的长)为______

 (2)如图3,若点B落在圆心为A,半径为2的圆上,线段BC与线段OA的距离记为d,求d关于m的函数解析式.

(3)当m的值变化时,动线段BC与线段OA的距离始终为2,线段BC的中点为M.

①求出点M随线段BC运动所围成的封闭图形的周长;

②点D的坐标为(0,2),m≥0,n≥0,作MH⊥x轴,垂足为H,是否存在m的值,使以A、M、H为顶点的三角形与△AOD相似,若存在,求出m的值;若不存在,请说明理由.


(1)2;(2)(3)①16+4π②存在,m=1,m=3,m=

【解析】解:(1)2;

       (2)∵点B落在圆心为A,半径为2的圆上,∴2≤m≤6。

当4≤m≤6时,根据定义, d=AB=2。

                当2≤m<4时,如图,过点B作BE⊥OA于点E,

则根据定义,d=EB。

               

②存在。如图,

由A(4,0),D(0,2), 得

                

                  又FM4=2,∴

                  若△AOD∽△A H2M2,则,即,

                   解得(不合题意,舍去)。此时m=

                   若△AOD∽△M2H2 A,则,即,

                   解得(不合题意,舍去)。


练习册系列答案
相关习题

科目:初中数学 来源: 题型:


如图,抛物线的顶点为D(﹣1,4),与轴交于点C(0,3),与轴交于A,B两点(点A在点B的左侧)。

(1)求抛物线的解析式;

(2)连接AC,CD,AD,试证明△ACD为直角三角形;

(3)若点E在抛物线上,EF⊥x轴于点F,以A、E、F为顶点的三角形与△ACD相似,试求出所有满足条件的点E的坐标。

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,五边形ABCDE中,AB⊥BC,AE∥CD,∠A=∠E=135°,AB=AE=2,DE=4,则五边形ABCDE的面积等于     

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,A,P,B,C是⊙O上的四个点,∠APC=∠BPC=60°,过点A作⊙O的切线交BP的延长线于点D.

(1)求证:△ADP∽△BDA;

(2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论;

(3)若AD=2,PD=1,求线段BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:


已知A,B,C为⊙O上相邻的三个六等分点,点E在劣弧AC上(不与A,B,C重合),EF

为⊙O的直径,将⊙O沿EF折叠,使点A与A′重合,点B与B′重合,连接EB′,EC,EA′。设EB′=b,EC=c,EA′=p。试探究b,c,p三者的数量关系。

查看答案和解析>>

科目:初中数学 来源: 题型:


如图①,在平面直角坐标系中,已知点A(2,0),点B(0,4),点E(0,1),如图②,将△AEO沿x轴向左平移得到△A′E′O′,连接A′B、BE′。

(1)设AA′=m(m >0),试用含m的式子表示,并求出使取得最小值时点E′的坐标;

(2)当A′B+BE′取得最小值时,求点E′的坐标。

查看答案和解析>>

科目:初中数学 来源: 题型:


根据要求,解答下列问题:

(1)已知直线l1的函数表达式为,直接写出:①过原点且与l1垂直的直线l2的函数表达式;②过点(1,0)且与l1垂直的直线l2的函数表达式;

(2)如图,过点(1,0)的直线l4向上的方向与x轴的正方向所成的角为600,①求直线l4的函数表达式;②把直线l4绕点(1,0)按逆时针方向旋转900得到的直线l5,求直线l5的函数表达式;

(3)分别观察(1)(2)中的两个函数表达式,请猜想:当两直线垂直时,它们的函数表达式中自变量的系数之间有何关系?请根据猜想结论直接写出过点(1,1)且与直线垂直的直线l6的函数表达式。

查看答案和解析>>

科目:初中数学 来源: 题型:


为了考察冰川融化的状况,一支科考队在某冰川上设定一个以大本营O为圆心,半径为4km 圆形考察区域,线段P1、P2是冰川的部分边界线(不考虑其它边界),当冰川融化时,边界线沿着与其垂直的方向朝考察区域平行移动.若经过n年,冰川的边界线P1P2移动的距离为s(km),并且s与n(n为正整数)的关系是.以O为原点,建立如图所示的平面直角坐标系,其中P1、P2的坐标分别是(-4,9)、(-13,-3).

(1)求线段P1P2所在的直线对应的函数关系式;

(2)求冰川的边界线移动到考察区域所需要的最短时间.

查看答案和解析>>

科目:初中数学 来源: 题型:


 在如图所示的平面直角坐标系中,点P是直线y=x上的动点,A(1,0),B(2,0)是x轴上的两点,则PA+PB的最小值为         

查看答案和解析>>

同步练习册答案