精英家教网 > 初中数学 > 题目详情

为了考察冰川融化的状况,一支科考队在某冰川上设定一个以大本营O为圆心,半径为4km 圆形考察区域,线段P1、P2是冰川的部分边界线(不考虑其它边界),当冰川融化时,边界线沿着与其垂直的方向朝考察区域平行移动.若经过n年,冰川的边界线P1P2移动的距离为s(km),并且s与n(n为正整数)的关系是.以O为原点,建立如图所示的平面直角坐标系,其中P1、P2的坐标分别是(-4,9)、(-13,-3).

(1)求线段P1P2所在的直线对应的函数关系式;

(2)求冰川的边界线移动到考察区域所需要的最短时间.


(1);(2)6.

【解析】

(2)在中,当,则,当,则

∴与x、y轴的交点坐标是(0,)、(,0),由勾股定理,得


练习册系列答案
相关习题

科目:初中数学 来源: 题型:


 阅读下面短文:如图1,△ABC是直角三角形,∠C=90°,现将△ABC补成长方形,使△ABC的两个顶点为长方形一边的两个端点,第三个顶点落在长方形这一边的对边上,那么符合要求的长方形可以画出两个:长方形ACBD和长方形AEFB(如图2)。

解答问题:

(1)设图2中长方形ACBD和长方形AEFB的面积分别为S1,S2,则S1    S2(填“>”、“=”或“<”)

(2)如图3,△ABC是钝角三角形,按短文中的要求把它补成长方形,那么符合要求的长方形可以画出        个,利用图3把它画出来。

(3)如图4,△ABC是锐角三角形且三边满足BC>AC>AB,按短文中的要求把它补成长方形,那么符合要求的长方形可以画出       个,利用图4把它画出来。

(4)在(3)中所画出的长方形中,哪一个的周长最小?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:


定义:P、Q分别是两条线段a和b上任意一点,线段PQ长度的最小值叫做线段与线段的距离.

已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角系中四点.

(1)根据上述定义,当m=2,n=2时,如图1,线段BC与线段OA的距离是_____,

当m=5,n=2时,如图2,线段BC与线段OA的距离(即线段AB的长)为______

 (2)如图3,若点B落在圆心为A,半径为2的圆上,线段BC与线段OA的距离记为d,求d关于m的函数解析式.

(3)当m的值变化时,动线段BC与线段OA的距离始终为2,线段BC的中点为M.

①求出点M随线段BC运动所围成的封闭图形的周长;

②点D的坐标为(0,2),m≥0,n≥0,作MH⊥x轴,垂足为H,是否存在m的值,使以A、M、H为顶点的三角形与△AOD相似,若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,正六边形的边长为π,半径是1的⊙O从与AB相切于点D的位置出发,在正六边形外部按顺时针方向沿正六边形滚动,又回到与AB相切于点D的位置,则⊙O自转了【    】

A.4周          B.5周          C.6周          D.7周

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,在矩形ABCD中,点P在边CD上,且与C、D不重合,过点A作AP的垂线与CB的延长线相交于点Q,连接PQ,M为PQ中点.

(1)求证:△ADP∽△ABQ;

(2)若AD=10,AB=20,点P在边CD上运动,设CP=x,BM2=y,求y与x的函数关系式,并求线段BM的最小值;

(3)若AD= a,AB=,DP=8,随着a的大小的变化,点M的位置也在变化.当点M落在矩形ABCD内部时,求a的取值范围。

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,已知直线交坐标轴于两点,以线段为边向上作正方形

,过点的抛物线与直线另一个交点为

(1)请直接写出点的坐标;

(2)求抛物线的解析式;

(3)若正方形以每秒个单位长度的速度沿射线下滑,直至顶点落在轴上时停止.设正方形落在轴下方部分的面积为,求关于滑行时间的函数关系式,并写出相应自变量的取值范围;

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,菱形ABCD的边长为2,∠A=,动点P从点B出发,沿B-C-D的路线向点D运动。设△ABP的面积为y (B、P两点重合时,△ABP的面积可以看做0),点P运动的路程为x,则y与x之间函数关系的图像大致为【    】

A.       B.        C.       D.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图所示,在直角坐标系中放置一个矩形ABCD,其中AB=2,AD=1,将矩形ABCD沿x轴的正方向无滑动的在x轴上滚动,当点A离开原点后第一次落在x轴上时,点A运动的路径线与x轴围成的面积为

       .

查看答案和解析>>

科目:初中数学 来源: 题型:


 如图,在直角梯形ABCD中,AD // BC,∠B=90°,AD=24cm,BC=26cm,动点P从A点开始沿AD边向D以3cm/s的速度运动,动点Q从点C开始沿CB边向点B以1cm/s的速度运动,点P、Q分别从A、C同时出发,设运动时间为t (s).

⑴当其中一点到达端点时,另一点也随之停止运动.

①当t为何值时,以CD、PQ为两边,以梯形的底(AD或BC)的一部分(或全部)为第三边能构成一个三角形;②当t为何值时,四边形PQCD为等腰梯形.

⑵若点P从点A开始沿射线AD运动,当点Q到达点B时,点P也随之停止运动.当t为何值时,以P、Q、C、D为顶点的四边形是平行四边形.

查看答案和解析>>

同步练习册答案