精英家教网 > 初中数学 > 题目详情

如图,已知直线交坐标轴于两点,以线段为边向上作正方形

,过点的抛物线与直线另一个交点为

(1)请直接写出点的坐标;

(2)求抛物线的解析式;

(3)若正方形以每秒个单位长度的速度沿射线下滑,直至顶点落在轴上时停止.设正方形落在轴下方部分的面积为,求关于滑行时间的函数关系式,并写出相应自变量的取值范围;


1);(2)

(3)当时,

时,

时,=

【解析】

抛物线过点

解得

(3)①当点A运动到点F时,

时,如图1,

; 

②当点运动到轴上时,

时,如图2,

③当点运动到轴上时,

时,如图3,

=. 

考点:二次函数的综合题

点评:此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:


如图,已知ABCD,对角线AC与BD相交于点O,点P在边AD上,过点P分别作PE⊥AC、PF⊥BD,垂足分别为E、F。

(1)若PF=PE,PE=,EO=1,求∠EPF的度数;

(2)若点P是AD的中点,点F是DO的中点,PE=PF,BF =BC+-4,求BC的长。

查看答案和解析>>

科目:初中数学 来源: 题型:


如图①,在平面直角坐标系中,已知点A(2,0),点B(0,4),点E(0,1),如图②,将△AEO沿x轴向左平移得到△A′E′O′,连接A′B、BE′。

(1)设AA′=m(m >0),试用含m的式子表示,并求出使取得最小值时点E′的坐标;

(2)当A′B+BE′取得最小值时,求点E′的坐标。

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,梯形ABCD中,AB∥DC,DE⊥AB,CB⊥AB,且AE = EB = 5,DE = 12,动点P从点A出发,沿折线AD-DC-CB以每秒1个单位长的速度运动到点B停止。设运动时间为t秒,y = SEPB,则y与t的函数图象大致是【    】

  A.     B.     C.     D.

查看答案和解析>>

科目:初中数学 来源: 题型:


为了考察冰川融化的状况,一支科考队在某冰川上设定一个以大本营O为圆心,半径为4km 圆形考察区域,线段P1、P2是冰川的部分边界线(不考虑其它边界),当冰川融化时,边界线沿着与其垂直的方向朝考察区域平行移动.若经过n年,冰川的边界线P1P2移动的距离为s(km),并且s与n(n为正整数)的关系是.以O为原点,建立如图所示的平面直角坐标系,其中P1、P2的坐标分别是(-4,9)、(-13,-3).

(1)求线段P1P2所在的直线对应的函数关系式;

(2)求冰川的边界线移动到考察区域所需要的最短时间.

查看答案和解析>>

科目:初中数学 来源: 题型:


某数学兴趣小组对线段上的动点问题进行探究,已知AB=8.

问题思考:

如图1,点P为线段AB上的一个动点,分别以AP、BP为边在同侧作正方形APDC与正方形PBFE.

(1)在点P运动时,这两个正方形面积之和是定值吗?如果时求出;若不是,求出这两个正方形面积之和的最小值.

(2)分别连接AD、DF、AF,AF交DP于点A,当点P运动时,在△APK、△ADK、△DFK中,是否存在两个面积始终相等的三角形?请说明理由.

问题拓展:

(3)如图2,以AB为边作正方形ABCD,动点P、Q在正方形ABCD的边上运动,且PQ=8.若点P从点A出发,沿A→B→C→D的线路,向D点运动,求点P从A到D的运动过程中,PQ的中点O所经过的路径的长。

 (4)如图(3),在“问题思考”中,若点M、N是线段AB上的两点,且AM=BM=1,点G、H分别是边CD、EF的中点.请直接写出点P从M到N的运动过程中,GH的中点O所经过的路径的长及OM+OB的最小值.

    

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,在平面直角坐标系中,O为坐标原点,点A、B的坐标分别为(8,0)、(0,6).动点Q从点O、动点P从点A同时出发,分别沿着OA方向、AB方向均以1个单位长度/秒的速度匀速运动,运动时间为t(秒)(0<t≤5).以P为圆心,PA长为半径的⊙P与AB、OA的另一个交点分别为点C、D,连结CD、QC.

(1)当t为何值时,点Q与点D重合?

(2)当t为何值时,DQ=2AD?

(3)求线段QC所在直线与⊙P相切时t的值。

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,在直角坐标系中,点A(0,4),B(-3,4),C(-6,0),动点P从点A出发以1个单位/秒的速度在y轴上向下运动,动点Q同时从点C出发以2个单位/秒的速度在x轴上向右运动,过点P作PD⊥y轴,交OB于D,连接DQ.当点P与点O重合时,两动点均停止运动.设运动的时间为t秒.

(1)当t=1时,求线段DP的长;

(2)连接CD,设△CDQ的面积为S,求S关于t的函数解析式,并求出S的最大值;

(3)运动过程中是否存在某一时刻,使△ODQ与△ABC相似?若存在,请求出所有满足要求的t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,在平面直角坐标系中,二次函数的图象与y轴交于点C,点P是抛物线上的一个动点,点P关于y轴的对称点Q,连接PO,PC,QO,QC,得到四边形,是否存在点P,使四边形为菱形?若存在,求出此时点P的坐标;若不存在,请说明理由。

查看答案和解析>>

同步练习册答案