精英家教网 > 初中数学 > 题目详情

如图,在平面直角坐标系中,二次函数的图象与y轴交于点C,点P是抛物线上的一个动点,点P关于y轴的对称点Q,连接PO,PC,QO,QC,得到四边形,是否存在点P,使四边形为菱形?若存在,求出此时点P的坐标;若不存在,请说明理由。


解:存在。

∴OE=EC=,即P点的纵坐标为

解得:

∴存在这样的点,此时P点的坐标为()或()。

【考点】二次函数综合题,轴对称的性质,曲线上点的坐标与方程的关系,菱形的性质,解一元二次方程。


练习册系列答案
相关习题

科目:初中数学 来源: 题型:


如图,已知直线交坐标轴于两点,以线段为边向上作正方形

,过点的抛物线与直线另一个交点为

(1)请直接写出点的坐标;

(2)求抛物线的解析式;

(3)若正方形以每秒个单位长度的速度沿射线下滑,直至顶点落在轴上时停止.设正方形落在轴下方部分的面积为,求关于滑行时间的函数关系式,并写出相应自变量的取值范围;

查看答案和解析>>

科目:初中数学 来源: 题型:


 如图,扇形OAB中,∠AOB=60°,扇形半径为4,点C在,CD⊥OA,垂足为点D,当△OCD的面积最大时,图中阴影部分的面积为    ▲   

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,矩形ABCD中,AB=3,BC=4,将矩形ABCD沿对角线AC平移,平移后的矩形为EFGH(A、E、C、G始终在同一条直线上),当点E与C重合时停止移动.平移中EF与BC交于点N,GH与BC的延长线交于点M,EH与DC交于点P,FG与DC的延长线交于点Q.设S表示矩形PCMH的面积,示矩形NFQC的面积

(1)S与吗?请说明理由.

(2)设AE=x,写出S和x之间的函数关系式,并求出x取何值时S有最大值,最大值是多少?

(3)如图2,连结BE,当AE为何值时,等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:


 如图,在直角梯形ABCD中,AD // BC,∠B=90°,AD=24cm,BC=26cm,动点P从A点开始沿AD边向D以3cm/s的速度运动,动点Q从点C开始沿CB边向点B以1cm/s的速度运动,点P、Q分别从A、C同时出发,设运动时间为t (s).

⑴当其中一点到达端点时,另一点也随之停止运动.

①当t为何值时,以CD、PQ为两边,以梯形的底(AD或BC)的一部分(或全部)为第三边能构成一个三角形;②当t为何值时,四边形PQCD为等腰梯形.

⑵若点P从点A开始沿射线AD运动,当点Q到达点B时,点P也随之停止运动.当t为何值时,以P、Q、C、D为顶点的四边形是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:


已知在直角坐标系中,A(0,2),F(-3,0),D为x轴上一动点,过点F作直线AD的垂线FB,交y轴于B,点C(2,)为定点,在点D移动的过程中,如果以A,B,C,D为顶点的四边形是梯形,则点D的坐标为_______________.

查看答案和解析>>

科目:初中数学 来源: 题型:


 如图1,矩形MNPQ中,点E、F、G、H分别在NP、PQ、QM、MN上,若,则称四边形EFGH为矩形MNPQ的反射四边形.在图2、图3中,四边形ABCD为矩形,且

(1)在图2、图3中,点E、F分别在BC、CD边上,图2中的四边形EFGH是利用正方形网格在图上画出的矩形ABCD的反射四边形.请你利用正方形网格在图3上画出矩形ABCD的反射四边形EFGH;

(2)图2、图3中矩形ABCD的反射四边形EFGH的周长是否为定值?若是定值,请直接写出这个定值;若不是定值,请直接写出图2、图3中矩形ABCD的反射四边形EFGH的周长各是多少;

(3)图2、图3中矩形ABCD的反射四边形EFGH的面积是否为定值?若是定值,请直接写出这个定值;若不是定值,请直接写出图2、图3中矩形ABCD的反射四边形EFGH的面积各是多少.

查看答案和解析>>

科目:初中数学 来源: 题型:


 已知:在矩形ABCD中,E边BC上的一点,AE⊥DE,AB=12,BE=,F为线段BE上一点,EF=7,连接AF。如图1,现有一张硬纸片△GMN,∠NGM=900,NG=6,MG=,斜边MN与边BC在同一直线上,点N与点E重合,点G在线段DE上。如图2,△GMN从图1的位置出发,以每秒1个单位的速度沿EB向点B匀速移动,同时,点P从A点出发,以每秒2个单位的速度沿AD向点D匀速移动,点Q为直线GN与线段AE的交点,连接PQ。当点G到达线段AE上时,△GMN和点P同时停止运动。设运动时间为t秒,解答问题:

(1)在整个运动过程中,当点G在线段AE上时,求t的值;

(2)在整个运动过程中,是否存在点P,使△APQ是直角三角形,若存在,求出t的值;若不存在,说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:


 已知一元二次方程x2-11x+30=0 的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC底边上的高为        

查看答案和解析>>

同步练习册答案