如图,扇形OAB中,∠AOB=60°,扇形半径为4,点C在
上
,CD⊥OA,垂足为点D,当△OCD的面积最大时,图中阴影部分的
面积为 ▲
.
![]()
科目:初中数学 来源: 题型:
如图①,在平面直角坐标系中,已知点A(2,0),点B(0,4),点E(0,1),如图②,将△AEO沿x轴向左平移得到△A′E′O′,连接A′B、BE′。
(1)设AA′=m(m >0),试用含m的式子表示
,并求出使
取得最小值时点E′的坐标;
(2)当A′B+BE′取得最小值时,求点E′的坐标。
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在平面直角坐标系中,O为坐标原点,点A、B的坐标分别为(8,0)、(0,6).动点Q从点O、动点P从点A同时出发,分别沿着OA方向、AB方向均以1个单位长度/秒的速度匀速运动,运动时间为t(秒)(0<t≤5).以P为圆心,PA长为半径的⊙P与AB、OA的另一个交点分别为点C、D,连结CD、QC.
(1)当t为何值时,点Q与点D重合?
(2)当![]()
t为何值时,DQ=2AD?
(3)求线段QC所在直线与⊙P相切时t的值。
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在直角坐标系中,
点A(0,4),B(-3,4),C(-6,0),动点P从点A出发以1个单位/秒的速度在y轴上向下运动,动点Q同时从点C出发以2个单位/秒的速度在x轴上向右运动,过点P作PD⊥y轴,交OB于D,连接DQ.当点P与点O重合时,两动点均停止运动.设运动的时间为t秒.
![]()
![]()
(1)当t=1时,求线段DP的长;
(2)连接CD,设△CDQ的面积为S,求S关于t的函数解析式,并求出S的最大值;
(3)运动过程中是否存在某一时刻,使△ODQ与△
ABC相似?若存在,请求出所有满足要求的t的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在矩形OABC中,AO=10,AB=8,沿直线CD折叠矩形OABC的一边BC,使点B落在OA边上的点E处.分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系,抛物线y=ax2+bx+c经过O,D,C三点.
(1)求AD的长及抛物线的解析式;
(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒,当t为何值时,以P、Q、C为顶点的三角形与△ADE相似?
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在直角梯形ABCD中,AD∥CB, ![]()
,动点P从点D出发,沿射线DA的方向以每秒2个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒一个单位长的速度向点B运动,点P,Q分别从点D,C同时出发,当点Q运动到点B时,点P随之停止运动.设运动的时间为t
(秒).
![]()
![]()
(1)设△BPQ的面积为S,求S与t之间的函数关系式;
(2)当t为何值时,四边形ABQP是平行四
边形.
(3)当t为何值时,以B,P,Q三点为顶点的三角形是等腰三角形?
【
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在平面直角坐标系中,二次函数
的图象与y轴交于点C,点P是抛物线上的一个动点,点P关于y轴的对称点Q,连接PO,PC,QO,QC,得到四边形
,是否存在点P,使四边形
为菱形?若存在,求出此时点P的坐标;若不存在,请说明理由。
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
已知点A(0,0),B(0,3),C(4,t+3),D(4,t). 记N(t)为□ABCD内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N(t)所有可能的值为【 】
A.6、7 B.7
、8 C.6、7、8 D.6、8、9
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com