精英家教网 > 初中数学 > 题目详情

如图,梯形ABCD中,AB∥DC,DE⊥AB,CB⊥AB,且AE = EB = 5,DE = 12,动点P从点A出发,沿折线AD-DC-CB以每秒1个单位长的速度运动到点B停止。设运动时间为t秒,y = SEPB,则y与t的函数图象大致是【    】

  A.     B.     C.     D.


A。

【考点】动点问题的函数图象,直角梯形的性质,勾股定理,锐角三角函数定义,分类思想的应用。

【分析】分三段考虑,①点P在AD上运动,②点P在DC上运动,③点P在BC上运动,分别求出y与t的函数表达式,继而可得出函数图象:

在Rt△ADE中,

①     点P在AD上运动时,

综上可得选项A的图象符合。故选A。


练习册系列答案
相关习题

科目:初中数学 来源: 题型:


 有三张正面分别写有数字﹣2,﹣1,1的卡片,它们的背面完全相同,将这三张卡片北背面朝上洗匀后随机抽取一张,以其正面的数字作为x的值,不放回卡片洗匀,再从余下的两张卡片中随机抽取一张,以其正面的数字作为y的值,两次结果记为(x,y)。

(1)用树状图或列表法表示(x,y)所有可能出现的结果;

(2)求使分式无意义的(x,y)出现的概率;

(3)化简分式,并求使分式的值为整数的(x,y)出现的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:


 菱形ABCD中,∠ABC=450,点P是对角线BD上的任一点,点P关于直线AB、AD、CD、BC的对称点分别是点E、F、G、H, BE与DF相交于点M,DG与BH相交于点N,证明:四边形BMDN是正方形。

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,对称轴为的抛物线轴相交于点

(1).求抛物线的解析式,并求出顶点的坐标

(2).连结AB,把AB所在的直线平移,使它经过原点O,得到直线.点P是上一动点.设以点A、B、O、P为顶点的四边形面积为S,点P的横坐标为,当0<S≤18时,求的取值范围

(3).在(2)的条件下,当取最大值时,抛物线上是否存在点,使△OP为直角三角形且OP为直角边.若存在,直接写出点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,正六边形的边长为π,半径是1的⊙O从与AB相切于点D的位置出发,在正六边形外部按顺时针方向沿正六边形滚动,又回到与AB相切于点D的位置,则⊙O自转了【    】

A.4周          B.5周          C.6周          D.7周

查看答案和解析>>

科目:初中数学 来源: 题型:


 如下图所示,已知等腰梯形ABCD,AD∥BC,AD=2,BC=6,AB=DC=,若动直线l垂直于BC,且从经过点B的位置向右平移,直至经过点C的位置停止,设扫过的阴影部分的面积为S,BP为x,则S关于x的函数关系式是         

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,已知直线交坐标轴于两点,以线段为边向上作正方形

,过点的抛物线与直线另一个交点为

(1)请直接写出点的坐标;

(2)求抛物线的解析式;

(3)若正方形以每秒个单位长度的速度沿射线下滑,直至顶点落在轴上时停止.设正方形落在轴下方部分的面积为,求关于滑行时间的函数关系式,并写出相应自变量的取值范围;

查看答案和解析>>

科目:初中数学 来源: 题型:


 如图,在平面直角坐标系中,抛物线经过平移得到抛物线,其对称轴与两段抛物线所围成的阴影部分的面积为【    】

   A.2         B.4         C.8          D.16

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,矩形ABCD中,AB=3,BC=4,将矩形ABCD沿对角线AC平移,平移后的矩形为EFGH(A、E、C、G始终在同一条直线上),当点E与C重合时停止移动.平移中EF与BC交于点N,GH与BC的延长线交于点M,EH与DC交于点P,FG与DC的延长线交于点Q.设S表示矩形PCMH的面积,示矩形NFQC的面积

(1)S与吗?请说明理由.

(2)设AE=x,写出S和x之间的函数关系式,并求出x取何值时S有最大值,最大值是多少?

(3)如图2,连结BE,当AE为何值时,等腰三角形.

查看答案和解析>>

同步练习册答案