精英家教网 > 初中数学 > 题目详情

 菱形ABCD中,∠ABC=450,点P是对角线BD上的任一点,点P关于直线AB、AD、CD、BC的对称点分别是点E、F、G、H, BE与DF相交于点M,DG与BH相交于点N,证明:四边形BMDN是正方形。


∵四边形ABCD是菱形,

        ∴∠ABD=∠DBC=∠ADB=∠BDC。

        ∵∠ABC=450,点P关于直线AB、AD、CD、BC的对称点分别是点E、F、G、H,

        ∴∠MBN=∠MDN=900,∠MBC=∠MDB=450

∴△BDM是等腰直角三角形。

∴∠BMD=900,BM=DM。

        ∴四边形BMDN是正方形。

【考点】菱形的性质,轴对称的性质,正方形的判定,等腰直角三角形的判定和性质。


练习册系列答案
相关习题

科目:初中数学 来源: 题型:


若抛物线y=ax2+bx+1与x轴只有一个交点,且过点A(m,n),B(m+4,n),则n=

       (用含a的代数式表示);若a=1,则点A的坐标为       

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,已知ABCD,对角线AC与BD相交于点O,点P在边AD上,过点P分别作PE⊥AC、PF⊥BD,垂足分别为E、F。

(1)若PF=PE,PE=,EO=1,求∠EPF的度数;

(2)若点P是AD的中点,点F是DO的中点,PE=PF,BF =BC+-4,求BC的长。

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,已知AB为⊙O的直径,CD是弦,AB⊥CD于E,OF⊥AD于F,△OBD是等边三角形。

(1)求证:OF∥BD;

(2)求证:△AFO≌△DEB;

(3)若BE=4cm,求阴影部分的面积。

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,A,P,B,C是⊙O上的四个点,∠APC=∠BPC=60°,过点A作⊙O的切线交BP的延长线于点D.

(1)求证:△ADP∽△BDA;

(2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论;

(3)若AD=2,PD=1,求线段BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:


将矩形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将矩形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E,当△ADE是等腰直角三角形时,m=         ,点E的坐标为          

查看答案和解析>>

科目:初中数学 来源: 题型:


如图①,在平面直角坐标系中,已知点A(2,0),点B(0,4),点E(0,1),如图②,将△AEO沿x轴向左平移得到△A′E′O′,连接A′B、BE′。

(1)设AA′=m(m >0),试用含m的式子表示,并求出使取得最小值时点E′的坐标;

(2)当A′B+BE′取得最小值时,求点E′的坐标。

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,梯形ABCD中,AB∥DC,DE⊥AB,CB⊥AB,且AE = EB = 5,DE = 12,动点P从点A出发,沿折线AD-DC-CB以每秒1个单位长的速度运动到点B停止。设运动时间为t秒,y = SEPB,则y与t的函数图象大致是【    】

  A.     B.     C.     D.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,在直角坐标系中,点A(0,4),B(-3,4),C(-6,0),动点P从点A出发以1个单位/秒的速度在y轴上向下运动,动点Q同时从点C出发以2个单位/秒的速度在x轴上向右运动,过点P作PD⊥y轴,交OB于D,连接DQ.当点P与点O重合时,两动点均停止运动.设运动的时间为t秒.

(1)当t=1时,求线段DP的长;

(2)连接CD,设△CDQ的面积为S,求S关于t的函数解析式,并求出S的最大值;

(3)运动过程中是否存在某一时刻,使△ODQ与△ABC相似?若存在,请求出所有满足要求的t的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案