如图,在平面直角坐标系中,四边形ABCO是梯形,其中A(4,0),B(3,
),C(1,
),动点P从点A以每秒
1个单位的速度向点O运动,动
点Q也同时从点A沿A→B→ C→O的线路以每秒2个单位的速度向点O运动,当点P到达A点时,点Q也随之停止,设点P、
Q运动的时间为t(秒)。求△OPQ的面积S与时间t的函数关系式。
![]()
∵A(4,0),B
(3,
),C(1,
),
∴可求BC=2,OC=2,OA=4,AB=2。
∴梯形ABCO是等
腰梯形,且易求∠COA=∠BAO=600。
分三种情况讨论:
![]()
当点P在OA边上运动,点Q在AB边上运动时,如
图
1,0≤t≤1。
过点Q作QE⊥x轴的于点E,
则OP=
,AQ=
,
QE=
。
∴
。
![]()
当点P在OA边上运动,点Q在BC边上运动时,如图2,1<t≤2。
过点B作BF⊥x轴的于点F,
则OP=
, BF=
。
∴
。
![]()
![]()
【考点】双动点问题,等腰梯形的性质,由实际问题列函数关系式,锐角三角函数定义,特殊角的三角函数值,分类思想的应用。
【分
析】分0≤t≤1,1<t≤2和2<t≤3三种情况讨论。
科目:初中数学 来源: 题型:
如图,在正方形ABCD中,AB=4cm,动点M从A出发,以1cm/s的速度沿折线AB﹣BC运动,同时动点N从A出发,以2cm/s的速度沿折线
AD﹣DC﹣CB运动,M,N第一次
相遇时同时停止运动.设△AMN的面积为y,运动时间为x,则下列图象中能大致反映y与x的函数关系的是( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,平面之间坐标系中,Rt△ABC的∠ACB=90º,∠CAB=30º,直角边BC在x轴正半轴上滑动,点C的坐标为(t,0),直角边AC=
,经过O,C两点做抛物线
(a为常数,a>0),该抛物线与斜边AB交于点E,直线OA:y2=kx(k为常数,k>0)
![]()
(1)填空:用含t的代数式表示点A的坐标及k的值:A ,k= ;
(2)随着三角板的滑动,当a=1时:
①请你验证:抛物
线![]()
的顶点在函数
的图象上;
②当三角板滑至点E为AB的中点时,求t
的值。
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,已知动点A在函数
(x>o)的图象上,AB⊥x轴于
点B,AC⊥y轴于点C,延长CA至点D,使AD=AB,延长BA至点E,使AE=AC。直线DE分别交x轴,y轴于点P,Q。当QE:DP=4:9时,图中的阴影部分的面积等于 _。
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,正方形ABCD的边
长是4,点P是边CD上一点,连接PA,将线段PA绕点P逆时针旋转90°得到线段PE,在边AD延长线上取点F,使DF=DP
,连接EF,CF路。
(1)求证:四边形PCFE是平行四边形;
(2)当点P在边CD上运动时,四边形PCFE的面积是否有最大值?若有,请求出面积的最大值及此时CP长;若没有,请说明理由。
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在平面直角坐标系xOy中,点P(x,y)是抛物线
上的一个动点,抛物线的对称轴与x轴交于点D,经过点P的直线PE与y轴交于点E,是否存在△OPE与△OPD全等?若存在,请求出直线PE的解析式;若不存在,请说明理由。
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,等腰梯形MNPQ的上底长为2,腰长为3,一个底角为60°.正方形ABCD的边
长为1,它的一边AD在MN上,且顶点A与M重合.现将正方形AB
CD在梯形的外面沿边MN、NP、PQ进行翻滚,翻滚到有一个顶点与Q重合即停止滚动.
![]()
![]()
求正方形在整个翻滚过程中点A所经过的路线与梯形MNPQ的三边MN、NP、PQ所围成图形的面积S.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com