如图,等腰梯形MNPQ的上底长为2,腰长为3,一个底角为60°.正方形ABCD的边
长为1,它的一边AD在MN上,且顶点A与M重合.现将正方形AB
CD在梯形的外面沿边MN、NP、PQ进行翻滚,翻滚到有一个顶点与Q重合即停止滚动.
![]()
![]()
求正方形在整个翻滚过程中点A所经过的路线与梯形MNPQ的三边MN、NP、PQ所围成图形的面积S.
科目:初中数学 来源: 题型:
如图,在平面直角坐标系中,四边形ABCO是梯形,其中A(4,0),B(3,
),C(1,
),动点P从点A以每秒
1个单位的速度向点O运动,动
点Q也同时从点A沿A→B→ C→O的线路以每秒2个单位的速度向点O运动,当点P到达A点时,点Q也随之停止,设点P、
Q运动的时间为t(秒)。求△OPQ的面积S与时间t的函数关系式。
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
在平面直角坐标系中,已知抛物线
(a,c为常数)的顶点为P,
等腰直角三角形ABC的顶点A的坐标
为(0,﹣1),C的坐标为(﹣4,3),
直角顶点B在第二象限。
(1)如图,若该抛物线过A,B两点,求该抛物线的函数表达式;
(2)平移(1)中的抛物线,使顶点P在直线AC上滑动,且与AC交于另一点Q,若点M在直线AC下方,且为平移前(1)中的抛物线上的点,当以M、P、Q三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M的坐标。
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,已知:抛物线C1:
,将抛物线C1向上平移m个单位(m>0)得抛物线C
2,C2的顶点为G,与y轴交于M,点N是M关于x轴的对称点,点P(
)在直线MG上。问:当m为何值时
,在抛物线C2上存在点Q,使得以M、N、P、Q为顶点的四边形为平行四边形?![]()
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,A
B是⊙O的一条弦,点C是⊙O优弧AB上一动点,且∠ACB=45°,点E
、F分别是AC、BC的中点,直线EF与⊙O交于G、
H两点,若⊙O的半径为7,则GE+FH的最大值为 .
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,矩形ABCD中,AB=4cm,AD=3 cm,点P从A点出发,以5cm/s的速度,沿AC向C作匀速运动;与此同时,点Q也从A点出发,以4cm/s的速
度,沿射线AB作匀速运动。当P运动到C点时,P、Q都停止运动
。设点P运动的时间为ts。
(1)当P异于A.C时,证明:以P为圆心、PQ长为半径的圆总是与边AB相切;
(2)在整个运动过程中,t为怎样的
值时,以P为圆心、PQ长为半径的圆与边BC分别有1个公共点和2个公共点?
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图1,小明将一张直角梯形纸片沿虚线剪开,得到矩形和三角形两张纸片,测得AB=5,AD=4.在进行如下
操作时遇到了下面的几个问题,请你帮助解决.
![]()
![]()
![]()
![]()
(1)将△EFG的顶点G移到矩形的顶点B处,再将三角形绕点B顺时针旋转使E点落在CD边上,此时,EF恰好经过点A(如图2),请你求出AE和FG的长度.
(2)在(1)的条件下,小明先将三角形的边EG和矩形边AB重合,然后将△EFG沿直线BC向右平移,至F点与B重合时停止.在平移过程中,设G点平移的距离为x,两纸片重叠部分
面积为y,求在平移的整个过程
中,y与x的函数关系式,并求当重叠部分面积为10时,平移距离x的值(如图3).
(3)在(2)的操作中,小明发现在平移过程中,虽然有时平移的距离不等,但两纸片重叠的面积却是相等的;而有时候平移的距离不等,两纸片重叠部分的面积也不可能相等.请探索这两种情况下重叠部分面积y的范围(直接写出结果).
查看答案和解析>>
科目:初中数学 来源: 题型:
探究与发现:
探究一:我们知道,三角形的一个外角等
于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?
已知:如图,∠FDC与
∠ECD
分别为△ADC的两个外角,
试探究∠A与∠FDC+∠ECD的数量关系.
![]()
![]()
探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?
已知:如图,在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系.
![]()
![]()
探究三:若将△ADC改为任意四边形ABCD呢?
已知:如图,在四边形ABCD中,DP、CP分别平分∠AD
C和∠BCD,试利用上述结论探究∠P与∠A+∠B的数量关系.
![]()
![]()
探究四:若将上题中的四边形ABCD改为六边形ABCDEF呢?
请直接写出∠P与∠
A+∠B+∠E+∠F的数量关系: _______________________________.
![]()
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com