【题目】如图,在平面直角坐标系中,△AOB的顶点O为坐标原点,点A的坐标为(4,0),点B的坐标为(0,1),点C为边AB的中点,正方形OBDE的顶点E在x轴的正半轴上,连接CO,CD,CE.
(1)线段OC的长为 ;
(2)求证:△CBD≌△COE;
(3)将正方形OBDE沿x轴正方向平移得到正方形O1B1D1E1,其中点O,B,D,E的对应点分别为点O1,B1,D1,E1,连接CD,CE,设点E的坐标为(a,0),其中a≠2,△CD1E1的面积为S.
①当1<a<2时,请直接写出S与a之间的函数表达式;
②在平移过程中,当S=时,请直接写出a的值.
【答案】(1);(2)详见解析;(3)①S=﹣a+1;②当S=时,a=或.
【解析】
试题分析:(1)由点A的坐标为(4,0),点B的坐标为(0,1),根据勾股定理求得AB的长,再由点C为边AB的中点,根据直角三角形斜边的中线等于斜边的一半,即可求得线段OC的长;(2)由四边形OBDE是正方形,直角三角形斜边的中线等于斜边的一半,易得BD=OE,BC=OC,∠CBD=∠COE,即可证得:△CBD≌△COE;(3)①首先根据题意画出图形,然后过点C作CH⊥D1E1于点H,可求得△CD1E1的高与底,继而求得答案;
②分别从1<a<2与a>2去分析求解即可求得答案.
试题解析:(1)∵点A的坐标为(4,0),点B的坐标为(0,1),
∴OA=4,OB=1,
∵∠AOB=90°,
∴AB=,
∵点C为边AB的中点,
∴OC=AB=;
(2)证明:∵∠AOB=90°,点C是AB的中点,
∴OC=BC=AB,
∴∠CBO=∠COB,
∵四边形OBDE是正方形,
∴BD=OE,∠DBO=∠EOB=90°,
∴∠CBD=∠COE,
在△CBD和△COE中,
,
∴△CBD≌△COE(SAS);
(3)①解:过点C作CH⊥D1E1于点H,
∵C是AB边的中点,
∴点C的坐标为:(2,)
∵点E的坐标为(a,0),1<a<2,
∴CH=2﹣a,
∴S=D1E1CH=×1×(2﹣a)=﹣a+1;
②当1<a<2时,S=﹣a+1=,
解得:a=;
当a>2时,同理:CH=a﹣2,
∴S=D1E1CH=×1×(a﹣2)=a﹣1,
∴S=a﹣1=,
解得:a=,
综上可得:当S=时,a=或.
科目:初中数学 来源: 题型:
【题目】(10分)某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6080元的利润,应将销售单价定为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列因式分解正确的是( )
A. 5a﹣10a=5a(1﹣2a) B. a2﹣ab+ac=a(a﹣b﹣c)
C. a2﹣2ab﹣b2=(a﹣b)2 D. a2﹣b2=(a﹣b)(a+b)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D,连接C、D.
(1)求证:OC=OD;
(2)请确定射线OE与线段CD 的位置关系,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com