【题目】如图,Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,E是BC的中点,连接DE、OE.
(1)求证:DE与⊙O相切;
(2)求证:BC2=2CDOE;
(3)若cosC= ,DE=4,求AD的长.
【答案】
(1)证明:如图1,
连接BD,OD,
∵AB为⊙O的直径,
∴∠ADB=90°,
∴∠BDC=90°,
在Rt△BDC中,E是BC的中点,
∴DE=CE=BE= BC,
∴∠3=∠4,
∵OD=OB,
∴∠1=∠2,
∴∠ODE=∠1+∠3=∠2+∠4=90°,
∴DE与⊙O相切
(2)证明:如图2,
在直角三角形ABC中,∠C+∠A=90°,
在直角三角形BDC中,∠C+∠4=90°,
∴∠A=∠4,
又∵∠C=∠C,
∴△BCD∽△ACB,
,
∴BC2=ACCD,
∵O是AB的中点,E是BC的中点,
∴AC=2OE,
∴BC2=2CDOE
(3)解:如图3,
由(2)知,DE= BC,又DE=4,
∴BC=8,
在直角三角形BDC中, =cosC= ,
∴CD= ,
在直角三角形ABC中, =cosC= ,
∴AC=12,
∴AD=AC﹣CD=
【解析】(1)连接BD,OD,运用直径所对的圆周角为90°,结合直角三角形斜边中线等于斜边的一半,即可求证;(2)通过证明△BCD∽△ACB,结合三角形的中位线定理即可证明;(3)在直角三角形BDC和直角三角形ABC中,运用三角函数即可求出CD和AC的值,进而求解.
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2﹣5ax﹣6a交x轴于A、B两点(A左B右),交y轴于点C,直线y=﹣x+b交抛物线于D,交x轴于E,且△ACE的面积为6.
(1)求抛物线的解析式;
(2)点P为CD上方抛物线上一点,过点P作x轴的平行线,交直线CD于F,设P点的横坐标为m,线段PF的长为d,求d与m的函数关系式;
(3)在(2)的条件下,过点P作PG⊥CD,垂足为G,若∠APG=∠ACO,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.
(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=度;
(2)设∠BAC=α,∠BCE=β.
①如图2,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由;
②当点D在直线BC上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将函数y=2x+b(b为常数)的图象位于x轴下方的部分沿x轴翻折至其上方后,所得的折线是函数y=|2x+b|(b为常数)的图象.若该图象在直线y=2下方的点的横坐标x满足0<x<3,则b的取值范围为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,AC=BC=4,将△ABC折叠,使点A落在BC边上的点D处,EF为折痕,若AE=3,则sin∠BFD的值为( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,菱形ABCD中,对角线AC,BD相交于点O,且AC=12cm,BD=16cm.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,直线EF从点D出发,沿DB方向匀速运动,速度为1cm/s,EF⊥BD,且与AD,BD,CD分别交于点E,Q,F;当直线EF停止运动时,点P也停止运动.连接PF,设运动时间为t(s)(0<t<8).设四边形APFE的面积为y(cm2),则下列图象中,能表示y与t的函数关系的图象大致是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小聪计划中考后参加“我的中国梦”夏令营活动,需要一名家长陪同,爸爸、妈妈用猜拳的方式确定由谁陪同,即爸爸、妈妈都随机作出“石头”、“剪刀”、“布”三种手势(如图)中的一种,规定:“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,手势相同,不分胜负
(1)爸爸一次出“石头”的概率是多少?
(2)妈妈一次获胜的概率是多少?请用列表或画树状图的方法加以说明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com