精英家教网 > 初中数学 > 题目详情

【题目】计算:(1)(π﹣3)0+﹣2cos45°﹣
(2)若x+=3,求的值.
(1)(π﹣3)0+﹣2cos45°﹣
(2)若x+=3,求的值.

【答案】
(1)

解:原式=1+3﹣2×﹣8=2﹣7;


(2)

解:原式=

=

=

=


【解析】(1)根据零指数幂、二次根式的化简、特殊角的三角函数值、负整数指数幂的定义解答;
(2)分子分母同时除以x2 , 配方后整体代入即可解答.
【考点精析】掌握零指数幂法则和整数指数幂的运算性质是解答本题的根本,需要知道零次幂和负整数指数幂的意义: a0=1(a≠0);a-p=1/ap(a≠0,p为正整数);aman=am+n(m、n是正整数);(amn=amn(m、n是正整数);(ab)n=anbn(n是正整数);am/an=am-n(a不等于0,m、n为正整数);(a/b)n=an/bn(n为正整数).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是⊙O的内接正方形,AB=4,PC、PD是⊙O的两条切线,C、D为切点.

(1)如图1,求⊙O的半径;
(2)如图1,若点E是BC的中点,连接PE,求PE的长度;
(3)如图2,若点M是BC边上任意一点(不含B、C),以点M为直角顶点,在BC的上方作∠AMN=90°,交直线CP于点N,求证:AM=MN.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC,AB=AC,将△ABC沿BC方向平移得到△DEF.

(1)如图1,连接BD,AF,则BD AF(填“>”、“<”或“=”);
(2)如图2,M为AB边上一点,过M作BC的平行线MN分别交边AC,DE,DF于点G,H,N,连接BH,GF,求证:BH=GF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,对角线AC、BD相交于点O,点E、F是AD上的点,且AE=EF=FD.连接BE、BF,使它们分别与AO相交于点G、H.

(1)(1)求EG:BG的值;
(2)(2)求证:AG=OG;
(3)(3)设AG=a,GH=b,HO=c,求a:b:c的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,AB=BC,∠B=90°,AC=10.四边形BDEF是△ABC的内接正方形(点D、E、F在三角形的边上).则此正方形的面积是 

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,BC切⊙O于点B,OC平行于弦AD,过点D作DE⊥AB于点E,连结AC,与DE交于点P.求证:

(1)PE=PD
(2)ACPD=APBC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC中,∠ACB=90°,AC=BC=2,若把Rt△ABC绕边AB所在直线旋转一周,则所得几何体的表面积为 (结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在一面与地面垂直的围墙的同侧有一根高10米的旗杆AB和一根高度未知的电线杆CD,它们都与地面垂直,为了测得电线杆的高度,一个小组的同学进行了如下测量:某一时刻,在太阳光照射下,旗杆落在围墙上的影子EF的长度为2米,落在地面上的影子BF的长为10米,而电线杆落在围墙上的影子GH的长度为3米,落在地面上的影子DH的长为5米,依据这些数据,该小组的同学计算出了电线杆的高度.

(1)该小组的同学在这里利用的是 投影的有关知识进行计算的;
(2)试计算出电线杆的高度,并写出计算的过程。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点A(﹣2,n)在抛物线y=x2+bx+c上.
(1)若b=1,c=3,求n的值;
(2)若此抛物线经过点B(4,n),且二次函数y=x2+bx+c的最小值是﹣4,请画出点P(x﹣1,x2+bx+c)的纵坐标随横坐标变化的图象,并说明理由.

查看答案和解析>>

同步练习册答案