精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,∠ABC90°,以AB为直径的OAB于点D,点EBC的中点,连接ODDE

1)求证:ODDE

2)若∠BAC30°,AB12,求阴影部分的面积.

【答案】(1)详见解析;(2)12π9

【解析】

1)连接DB,根据圆周角定理、直角三角形的性质证明;

2)根据扇形面积公式计算即可.

1)证明:连接DB

ABO的直径,

∴∠ADB90°,

∴∠CDB90°,

∵点EBC的中点,

DECEBC

∴∠EDC=∠C

OAOD

∴∠A=∠ADO

∵∠ABC90°,

∴∠A+C90°,

∴∠ADO+EDC90°,

∴∠ODE90°,

ODDE

2)∵AB12,∠BAC30°,

AD6

阴影部分的面积=×6×3

12π9

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】中,为直径,CD相较于点H,弧AC=AD

1)如图1,求证:;

2)如图2,弧BC上有一点E,若弧CD=CE,求证:;

3)如图3,在(2)的条件下,点F在上,连接,延长FO于点K,若,求

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在平面直角坐标系中,直线轴交于点,与轴交于点,抛物线经过两点,与轴的另一交点为点

1)求抛物线的函数表达式;

2)点为直线下方抛物线上一动点.

①如图2所示,直线交线段于点,求的最小值;

如图3所示,连接过点,是否存在点,使得中的某个角恰好等于2倍?若存在,求点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线与坐标轴分别交于点,其中有,过抛物线对称轴左侧的一点轴于点,点上运动,点上的动点,连接

1)求抛物线的解析式及点的坐标;

2)求的最小值;

3)点是对称轴的左侧抛物线上的一个点,当时,求点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,圆柱形玻璃杯高为12cm、底面周长为18cm,在杯内离杯底4cm的点C

处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最

短距离为 cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠BAC=90°AB=AC.点DBC中点,E为边AB上一动点(不与AB点重合),以点D为直角顶点、以射线DE为一边作∠MDN=90°,另一条边DN与边AC交于点F.下列结论中正确结论是( )

①BE=AF

②△DEF是等腰直角三角形;

无论点EF的位置如何,总有EF=DF+CF成立;

四边形AEDF的面积随着点EF的位置不同发生变化.

A.①③B.②③C.①②D.①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在学习函数时,我们经历了确定函数的表达式利用函数图象研究其性质——运用函数解决问题的学习过程,在画函数图象时,我们通过列表、描点、连线的方法画出了所学的函数图象

同时,我们也学习过绝对值的意义

结合上面经历的学习过程,现在来解决下面的问题:

在函数y=|kx-1|+b中,当x=0时,y=-2;当x=1时,y=-3

(1)求这个函数的表达式;

(2)在给出的平面直角坐标系中,请直接画出此函数的图象并写出这个函数的两条性质;

(3)在图中作出函数y=的图象,结合你所画的函数图象,直接写出不等式|kx-1|+b≤的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】初三(1)班针对垃圾分类知晓情况对全班学生进行专题调查活动,对垃圾分类的知晓情况分为四类.其中,类表示非常了解类表示比较了解类表示基本了解类表示不太了解,每名学生可根据自己的情况任选其中一类,班长根据调查结果进行了统计,并绘制成了不完整的条形统计图和扇形统计图.

垃圾分类知晓情况各类别人数条形统计图垃圾分类知晓情况各类别人数扇形统计图

根据以上信息解决下列问题:

1)初三(1)班参加这次调查的学生有______人,扇形统计图中类别所对应扇形的圆心角度数为______°

2)求出类别的学生数,并补全条形统计图;

3)类别4名学生中有2名男生和2名女生,现从这4名学生中随机选取2名学生参加学校垃圾分类知识竞赛,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=4BC=3,点P是边AB上的一动点,连接DP

1)若将△DAP沿DP折叠,点A落在矩形的对角线上点A处,试求AP的长;

2)点P运动到某一时刻,过点P作直线PEBC于点E,将△DAP△PBE分别沿DPPE折叠,点A与点B分别落在点AB处,若PAB三点恰好在同一直线上,且AB=2,试求此时AP的长.

3)当点P运动到边AB的中点处时,过点P作直线PGBC于点G,将△DAP△PBG分别沿DPPG折叠,点A与点B重合于点F处,请直接写出FBC的距离.

查看答案和解析>>

同步练习册答案