【题目】(问题提出)
“不以规矩,不能成方圆.”——孟子;“圆,一中同长也.”——墨经.
(1)圆,一中同长也.”体现了古代先哲对“圆”定义的思考,请用现代文翻译:____.
(初步思考)
圆规是我们初中几何学习不可或缺的工具,用圆规不仅可以画圆、画弧,还可以画弧与弧的交点,利用这一特征可以构造很多图形,如:
(2)角平分线:如图1,只用圆规在∠AOB中画出一点P使得点P在∠AOB的角平分线上;对称点:如图2,只用圆规画出点P关于直线l的对称点Q,并说明理由.
(操作与应用)
(3)已知点A、直线l.在图3中只用圆规在直线l上画出两点B、C,使得A、B、C恰好是等腰三角形的3个顶点,(画出一个并写出相等线段即可):
已知点P、直线l.在图4中只用圆规画出一点Q,使得点P、Q所在的直线与直线l平行.(提示:平行四边形对边平行).
(4)已知点O、A、B,只用圆规画出半径为AB的⊙O与点A、B所在直线的交点C、D.
【答案】(1)圆是到定点等于定长的点的集合;(2)图形见解析;(3)图形见解析;(4)图形见解析.
【解析】
(1)根据圆的定义解答;
(2)图1,利用作角平分线的方法作图即可;图2利用菱形对角线互相平分垂直作图即可解答.
(3)以点P为圆心,大于点P到直线l的距离长为半径画弧,与直线l交于B,C两点,则点B,C即为所求.或在直线l上任取一点B,以点B为圆心,PB长为半径画弧,与直线l交于点C,则点B,C即为所求;
在直线l上任取B,C两点,以点P为圆心,BC长为半径画弧,以点C为圆心,AB长为半径画弧,两弧交于点Q.则点Q即为所求.
(4)过点A、B做直线,以点O为圆心,AB为半径作 O,交直线AB于点C、D.
解:(1) 圆是到定点等于定长的点的集合.(其它定义也可以);
(2)如图1,理由:角平分线上的点到角两边的距离相等。
如图2,
①如图2,在直线l上任取点C;
②以点P为圆心,PC长为半径作弧,交直线l于点D;
③分别以点C,点D为圆心,PC长为半径作弧,处于直线l异侧的两弧交点为Q.
所以点Q为所求.
理由:四条边相等的四边形是菱形,菱形的对角线互相垂直平分.
(3):(1)画法一:
①以点P为圆心,大于点P到直线l的距离长为半径画弧,与直线l交于B,C两点,则点B,C即为所求,此时PB=PC.
画法二:
在直线l上任取一点B,以点B为圆心,AB长为半径画弧,与直线l交于点C,则点B,C即为所求.
②画法:
在直线l上任取B,C两点,以点P为圆心,BC长为半径画弧,以点C为圆心,PB长为半径画弧,两弧交于点Q.则点Q即为所求.
(4)过点A、B做直线,以点O为圆心,AB为半径作 O,交直线AB于点C、D.
科目:初中数学 来源: 题型:
【题目】如图,平行四边形ABCD,DE交BC于F,交AB的延长线于E,且∠EDB=∠C.
(1)求证:△ADE∽△DBE;
(2)若DE=9cm,AE=12cm,求DC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,AC是⊙O的切线,切点为A,BC交⊙O于点D,点E是AC的中点.
(1)试判断直线DE与⊙O的位置关系,并说明理由;
(2)若⊙O的半径为2,∠B=50°,AC=4.8,求图中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的弦,C为弦AB上一点,设AC=m,BC=n(m>n),将弦AB绕圆心O旋转一周,若线段BC扫过的面积为(m2﹣n2)π,则=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某射击队为从甲、乙两名运动员中选拔一人参加全国比赛,对他们进行了8次测试,测试成绩(单位:环)如下表:
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | 第七次 | 第八次 | |
甲 | 10 | 8 | 9 | 8 | 10 | 9 | 10 | 8 |
乙 | 10 | 7 | 10 | 10 | 9 | 8 | 8 | 10 |
(1)根据表格中的数据,计算出甲的平均成绩是 环,乙的平均成绩是 环;
(2)分别计算甲、乙两名运动员8次测试成绩的方差;
(3)根据(1)(2)计算的结果,你认为推荐谁参加全国比赛更合适,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90,AC=BC=1,E、F为线段AB上两动点,且∠ECF=45°,过点E、F分别作BC、AC的垂线相交于点M,垂足分别为H、G.现有以下结论:①AB=;②当点E与点B重合时,MH=;③AF+BE=EF;④MGMH=,其中正确结论的个数是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与x轴交于A(x1,0)、B(x2,0)两点,且x1<x2与y轴交于点C(0,4),其中x1,x2是方程x2﹣4x﹣12=0的两个根.
(1)求抛物线的解析式;
(2)点M是线段AB上的一个动点,过点M作MN∥BC,交AC于点N,连结CM,当△CMN的面积最大时,求点M的坐标;
(3)点D(4,k)在(1)中抛物线上,点E为抛物线上一动点,在x轴上是否存在点F,使以A、D、E、F为顶点的四边形是平行四边形?如果存在,直接写出所有满足条件的点F的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某区举行“庆祝改革开放40周年”征文比赛,已知每篇参赛征文成绩记m分(60≤m≤100),组委会从1000篇征文中随机抽取了部分参赛征文,统计了他们的成绩,并绘制了如下不完整的两幅统计图表:
请根据以上信息,解决下列问题:
(1)征文比赛成绩频数分布表中c的值是________;
(2)补全征文比赛成绩频数分布直方图;
(3)若80分以上(含80分)的征文将被评为一等奖,试估计全市获得一等奖征文的篇数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】四张背面完全相同的纸牌(如图,用①、②、③、④表示),正面分别写有四个不同的条件.小明将这4张纸牌背面朝上洗匀后,先随机抽出一张(不放回),再随机抽出一张.
(1)写出两次摸牌出现的所有可能的结果(用①、②、③、④表示);
(2)以两次摸出的牌面上的结果为条件,求能判断四边形ABCD为平行四边形的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com