【题目】如图,,PAB的平分线与CBA的平分线相交于E,CE的延长线交AP于D,求证:
(1)AB=AD+BC;
(2)若BE=3,AE=4,求四边形ABCD的面积.
【答案】(1)证明见解析;(2)12.
【解析】
(1)此题要通过构造全等三角形来求解,延长AE交BC的延长线于M;由AP∥BC,及AE平分∠PAB,可求得∠BAE=∠M,即AB=BM,因此直线证得AD=MC即可;在等腰△ABM中,BE是顶角的平分线,根据等腰三角形三线合一的性质知:E是AM的中点,即AE=EM,而PA∥BM,即可证得△ADE≌△MCE,从而得到所求的结论.
(2)由(1)的全等三角形可知:△ADE、△MCE的面积相等,从而将所求四边形的面积转化为等腰△ABM的面积,易得AM、BE的值,从而根据三角形的面积公式求得△ABM的面积,即四边形ADCB的面积.
解:(1)延长AE交BC的延长线于M.
∵AE平分∠PAB,BE平分∠CBA,
∴∠1=∠2,∠3=∠4.
∵AD∥BC,
∴∠1=∠M=∠2,∠1+∠2+∠3+∠4=180°,
∴BM=BA,∠3+∠2=90°,
∴BE⊥AM.
在△ABE和△MBE中,
,
∴△ABE≌△MBE,
∴AE=ME
在△ADE和△MCE中,
∴△ADE≌△MCE,
∴AD=CM,
∴AB=BM=BC+AD.
(2)由(1)知:△ADE≌△MCE,
∴S四边形ABCD=S△ABM
又∵AE=ME=4,BE=3,
∴,
∴S四边形ABCD=12.
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD的纸片中,AC⊥AB,AC与BD交于O,将△ABC沿对角线AC翻折得到.
(1)求证:四边形ACDB’是矩形.
(2)若平行四边形ABCD的面积为12,求翻折后纸片重叠部分的面积,即.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小颖为妈妈准备了一份生日礼物,礼物外包装盒为长方体形状,长、宽、高分别为、、,为了美观,小颖决定在包装盒外用丝带打包装饰,她发现,可以用如图所示的三种打包方式,所需丝带的长度分别为,,(不计打结处丝带长度)
(1)用含、、的代数式分别表示,,;
(2)方法简介:
要比较两数与大小,我们可以将与作差,结果可能出现三种情况:
①,则;
②,则;
③,则;
我们将这种比较大小的方法叫做“作差法”.
请帮小颖选出最节省丝带的打包方式,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A(m,6),B(n,1)在反比例函数图象上,AD⊥x轴于点D,BC⊥x轴于点C,DC=5.
(1)求m,n的值并写出反比例函数的表达式;
(2)当时,直接写出的取值范围
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,点A表示3街与5大道的十字路口,点B表示5街与3大道的十字路口,如果用(3,5)→(4,5)→(5,5)→(5,4)→(5,3)表示由A到B的一条路径,那么你能用同样的方法写出由A到B的其他几条路径吗?请至少给出3种不同的路径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A′的坐标是( )
A. (2,5)B. (5,2)C. (2,﹣5)D. (5,﹣2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】初中生在数学运算中使用计算器的现象越来越普遍,某校一兴趣小组随机抽查了本校若干名学生使用计算器的情况.以下是根据抽查结果绘制出的不完整的条形统计图和扇形统计图:
请根据上述统计图提供的信息,完成下列问题:
(1)这次抽查的样本容量是;
(2)请补全上述条形统计图和扇形统计图;
(3)若从这次接受调查的学生中,随机抽查一名学生恰好是“不常用”计算器的概率是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,点D在AB边上,点D到点A的距离与点D到点C的距离相等.
(1)利用尺规作图作出点D,不写作法但保留作图痕迹.
(2)若△ABC的底边长5,周长为21,求△BCD的周长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com