【题目】理解:
(1)若直线l上有四个点A、B、C、D,则共有线段条;
(2)若直线l上有五个点A、B、C、D、E,则共有线段条;
(3)若直线l上有n个点A、B、C…,则红柚线段条. 应用:
(4)在一次有10人的聚会上,每两个人握一次手,共握手次.
(5)从A火车站到B火车站,中途有5站,若各车厢收费标准一样,则票价共有种.
(6)某n边形共有54条对角线,求n.
【答案】
(1)6
(2)10
(3)
(4)45
(5)21
(6)解:依题意得: =54,
解得:n1=12,n2=﹣9(舍去).
所以n=12.
【解析】解:理解:(1)直线l上有A、B、C、D四点,线段总条数是:3+2+1=6, 故答案是:6;(2)若直线l上有五个点A、B、C、D、E,线段总条数是:4+3+2+1=10,
故答案是:10;(3)若直线上有n个点时,线段总条数(n﹣1)+…+3+2+1= .
应用:(4)在一次有10人的聚会上,每两个人握一次手,共握手的次数是: =45(次).
故答案是:45;(5)从A火车站到B火车站,中途有5站,若各车厢收费标准一样,则票价共有: =21(种).
故答案是:21;
【考点精析】关于本题考查的多边形的对角线,需要了解设多边形的边数为n,则多边形的对角线条数为n(n-3)/2才能得出正确答案.
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.
(1)求证:△BDE∽△BAC;
(2)已知AC=6,BC=8,求线段AD的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】南海是我国的南大门,如图所示,某天我国一艘海监执法船在南海海域正在进行常态化巡航,在A处测得北偏东30°方向上,距离为20海里的B处有一艘不明身份的船只正在向正东方向航行,便迅速沿北偏东75°的方向前往监视巡查,经过一段时间后,在C处成功拦截不明船只,问我海监执法船在前往监视巡查的过程中行驶了多少海里(最后结果保留整数)?
(参考数据:cos75°=0.2588,sin75°=0.9659,tan75°=3.732, =1.732, =1.414)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为推广阳光体育“大课间”活动,我市某中学决定在学生中开设A:实心球,B:立定跳远,C:跳绳,D:跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图.请结合图中的信息解答下列问题:
(1)在这项调查中,共调查了多少名学生?
(2)请计算本项调查中喜欢“立定跳远”的学生人数和所占百分比,并将两个统计图补充完整;
(3)若调查到喜欢“跳绳”的5名学生中有3名男生,2名女生.现从这5名学生中任意抽取2名学生.请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们把分子为1的分数叫做理想分数,如 , , ,…,任何一个理想分数都可以写成两个不同理想分数的和,如 = + , = + , = + ,…,根据对上述式子的观察,请你思考:如果理想分数 = + (n是不小于2的整数,且a<b),那么b﹣a= . (用含n的式子表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小聪计划中考后参加“我的中国梦”夏令营活动,需要一名家长陪同,爸爸、妈妈用猜拳的方式确定由谁陪同,即爸爸、妈妈都随机作出“石头”、“剪刀”、“布”三种手势(如图)中的一种,规定:“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,手势相同,不分胜负
(1)爸爸一次出“石头”的概率是多少?
(2)妈妈一次获胜的概率是多少?请用列表或画树状图的方法加以说明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com