精英家教网 > 初中数学 > 题目详情

【题目】在长方形内,若两张边长分别为)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),长方形总未被这两张正方形纸片覆盖的部分用阴影表示,若图1中阴影部分的面积为,图2中阴影部分的面积和为,则关于的大小关系表述正确的是(

A.B.C.D.无法确定

【答案】A

【解析】

利用面积的和差分别表示出,利用整式的混合运算计算他们的差即可比较.

=AB-a)·a+CD-b)(AD-a

=AB-a)·a+AD-a)(AB-b

=AB-a)(AD-b+CD-b)(AD-a=AB-a)(AD-b+AB-b)(AD-a

-=AB-a)(AD-b+AB-b)(AD-a-AB-a)·a-AD-a)(AB-b

=AB-a(AD-a-b)

ADa+b

-0

A.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知BE平分ABDDE平分BDC,且BED =∠ABE +∠EDC

1)如图1,求证:AB//CD

2)如图2,若ABE=3∠ABF,且BFD=30°时,试求的值;

3)如图3,若H是直线CD上一动点(不与D重合),BI平分HBD,画出图形,并探究出EBIBHD的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M.

(1)求抛物线的解析式和对称轴;
(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,A(6a)B(b0)M(0c)P点为y轴上一动点,且(b2)2+|a6|+0

(1)求点BM的坐标;

(2)P点在线段OM上运动时,试问是否存在一个点P使SPAB13,若存在,请求出P点的坐标与AB的长度;若不存在,请说明理由.

(3)不论P点运动到直线OM上的任何位置(不包括点OM),∠PAM、∠APB、∠PBO三者之间是否都存在某种固定的数量关系,如果有,请利用所学知识找出并证明;如果没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知反比例函数y= 的图象如图所示,则二次函数y=﹣kx2﹣2x+ 的图象大致为( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】荣荣是个爱动脑筋的同学,在发现教材中的用方框在月历中移动的规律后,突发奇想,将连续的偶数2468排成如下表,并用一个十字形框架住其中的五个数,请你仔细观察十字形框架中数字的规律,并回答下列问题:

十字框中的五个数的和与中间的数16有什么关系?

设中间的数为x,用代数式表示十字框中的五个数的和;

(3)若将十字框上下左右移动,可框住另外的五个数,其中五个数的和能等于2018吗?如能,写出这五个数,如不能,说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,AD∥BE,∠B=∠D,直线AB与DC平行吗?说明理由(请在下面的解答过程的空格内填空或在括号内填写理由)。

解:直线AB与DC平行.理由如下:

∵ AD∥BE (已知 )

∴ ∠D = ∠DCE (      

又∵∠B = ∠D (        

∴∠B = ∠_____ (等量代换)

∴ AB∥DC (          

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料:

问题已知,试确定的取值范围有如下解法:

解:

同理得:

请按照上述方法,完成下列问题:

1)已知关于的方程组的解均为负数,若,求的取值范围.

2)已知,若成立,求的取值范围(结果用含的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将正方形对折后展开(图④是连续两次对折后再展开),再按图示方法折叠,能够得到一个直角三角形(阴影部分),且它的一条直角边等于斜边的一半.这样的图形有( )

A.4个
B.3个
C.2个
D.1个

查看答案和解析>>

同步练习册答案