【题目】某物流公司的甲、乙两辆货车分别从相距300千米的A、B两地同时出发相向而行,并以各自的速度匀速行驶,两车行驶1.5小时时甲车先到达配货站C地,此时两车相距30千米,甲车在C地用1小时配货,然后按原速度开往B地;乙车行驶2小时时也到C地,未停留继续开往A地。(友情提醒:画出线段图帮助分析)
(1)乙车的速度是 千米/小时,B、C两地的距离是 千米,A、C两地的距离是 千米;
(2)求甲车的速度及甲车到达B地所用的时间;
(3)乙车出发多长时间,两车相距150千米.
【答案】(1)60;120;180;(2)120;3.5;(3)小时或小时.
【解析】试题分析:(1)由题意可知,甲车2小时到达C地,休息了20分钟,乙车行驶2小时15分钟也到C地,这15分钟甲车未动,即乙车15分钟走了20千米,据此可求出乙车的速度,再根据速度求出B、C两地的距离和A、C两地的距离即可解答.
(2)根据A、C两地的距离和甲车到达配货站C地的时间可求出甲车的速度,再根据行程问题的关系式求出甲车到达B地所用的时间即可解答.注意要加上配货停留的1小时.
(3)此题分为两种情况,未相遇和相遇以后相距150千米,据此根据题意列出符合题意得方程即可解答.
试题解析:(1)60千米/时;120千米;180千米
(2)甲车的速度=180÷1.5=120千米/小时;
甲车到达B地所用的时间=300÷120+1=3.5小时.
(3)设乙车出发x小时,两车相距150千米,列方程得
300-(60+120)x=150或60x+120(x-1)=300+150
解得或
答:乙车出发或小时,两车相距150千米
科目:初中数学 来源: 题型:
【题目】如图,点C是∠ABC一边上一点
(1)按下列要求进行尺规作图: ①作线段BC的中垂线DE,E为垂足.
②作∠ABC的平分线BD.
③连结CD,并延长交BA于F.
(2)若∠ABC=62°,求∠BFC的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,已知A(﹣1,2),B(﹣3,1)C(0,﹣1)
(1)在图中作出△ABC关于y轴的对称图形△A1B1C1
(2)若将△ABC向右平移2个单位得到△A′B′C′,则A点的对应点A′的坐标是 .
(3)AC的长等于 , △ABC的面积是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(6分)小聪是个数学爱好者,他发现从1开始,连续几个奇数相加,和的变化规律如右表所示:
加数个数 | 连续奇数的和S |
1 | 1= |
2 | 1+3=22 |
3 | 1+3+5=32 |
4 | 1+3+5+7=42 |
5 | 1+3+5+7+9=52 |
n | … |
(1)如果n=7,则S的值为 ;
(2)求1+3+5+7+…+199的值;
(3)求13+15+17+…+79的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示.设点A,B,C所对应数的和是p.
(1)若以B为原点,写出点A,C所对应的数,并计算p的值;若以C为原点,p又是多少?
(2)若原点O在图中数轴上点C的右边,且CO=28,求p.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列事件中,是随机事件的是( )
A.射击运动员射击一次,命中靶心B.任意画一个三角形,其内角和是360°
C.掷一次骰子,向上一面的点数大于6D.通常加热到100℃,水沸腾
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com