【题目】问题原型:如图①,正方形ABCD的对角线交于点O,点E、F分别为边AB、AD中点,且∠EOF=90°,易得四边形AEOF的面积是正方形ABCD的面积的四分之一.(不用证明)
探究发现:某数学兴趣小组,尝试改变点E、F的位置,点E、F分别为边AB、AD上任一点,且∠EOF=90°,如图②,探究:四边形AEOF的面积是否为正方形ABCD面积的四分之一?并说明理由.
拓展提升:如图③,菱形ABCD中,∠BAD=120°,∠EAF=60°,且点E、F分别在边DC、BC上,四边形AECF的面积是菱形ABCD面积的几分之一?(直接写出结果即可)
【答案】解:探究发现,四边形AEOF的面积是否为正方形ABCD面积的四分之一.
理由:如图②中,
∵四边形ABCD是正方形,
∴DO=AO,∠ODF=∠OAE=45°,∠DOA=90°,△AOD的面积是正方形ABCD面积的四分之一,
∵∠EOF=90°,
∴∠AOE+∠AOF=90°,又∠ODF=∠AOF=∠DOA=90°,
∴∠AOE=∠DOF,
∴△AOE≌△DOF,
∴S四边形AEOF=S△AOD,
∴S四边形AEOF= S正方形ABCD.
拓展提升:结论:S四边形AEGF= S菱形ABGD.
理由:如图③中,连接AG.
∵四边形ABGD是菱形,∠DAB=120°,
∴AB=BG=GD=AD,∠GAD=∠GAB=60°,
∴△ADG和△ABG都是等边三角形,
∴∠D=∠AGF=60°,AD=AG,
∵∠DAG=∠EAF=60°,
∴∠DAE=∠GAF,
∴△DAE≌△GAF,
∴S△DAE=S△GAF,
∴S四边形AEGF=S△ADG= S菱形ABGD.
【解析】探究发现:只要证明△AOE≌△DOF,可得S四边形AEOF=S△AOD,推出S四边形AEOF= S正方形ABCD;
拓展提升:结论:S四边形AEGF= S菱形ABGD.只要证明△DAE≌△GAF即可解决问题;
科目:初中数学 来源: 题型:
【题目】如图,我国年税收收入及其增长速度的不完整统计图请你根据图中已有信息,解答下列问题:
这5年中,哪一年至哪一年的年税收收入增长率持续上升?
求出2008年我国的年税收收入精确到1亿元
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】.如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD交于点E、F,连结BF交AC于点M,连结DE、BO.若∠COB=60°,FO=FC,则下列结论:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE:S△BCM=2:3.其中正确结论的个数是( )
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为( )
A. 115° B. 120° C. 130° D. 140°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在平面内有四个点,它们的坐标分别是A(-1,0),B(2+,0),C(2,1),D(0,1).
(1)依次连接A,B,C,D围成的四边形是一个_____________形;
(2)求这个四边形的面积;
(3)将这个四边形向左平移个单位长度,四个顶点的坐标分别为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角△ABC,使∠BAC=90°,设点B的横坐标为x,点C的纵坐标为y,能表示y与x的函数关系的图象大致是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】根据下列表格中的对应值,判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的个数是 ( )
x | 6.17 | 6.18 | 6.19 | 6.20 |
y=ax2+bx+c | 0.02 | 0.01 | 0.02 | 0.04 |
A.0B.1C.2D.1或2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com