精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线y=﹣x2x+x轴交于A、B两点(点A在点B左侧),与y轴交于点C.

(1)求该抛物线的对称轴和线段AB的长;

(2)如图1,已知点D(0,﹣),点E是直线AC上访抛物线上的一动点,求AED的面积的最大值;

(3)如图2,点G是线段AB上的一动点,点H在第一象限,ACGH,AC=GH,ACGA′CG关于直线CG对称,是否存在点G,使得A′CH是直角三角形?若存在,请直接写出点G的坐标;若不存在,请说明理由.

【答案】(1)AB=4,抛物线的对称轴x=﹣1;(2)m=﹣时,SAED有最大值,最大值为;(3)满足条件点G坐标为(﹣1,0)或(0,0)或(1,0).

【解析】

(1)利用待定系数法即可解决问题;
(2)如图1中,设E(m,m2m+),根据SAED=SAOD+SAEO+SECO-SECD根据二次函数,利用二次函数的性质即可解决问题;
(3)分三种情形①如图2中,连接BC.当点A′y轴上时,∠HCA′=90°满足条件.②如图3中,当点G与点O重合时,易证四边形GCHA′是矩形,此时△CHA′是直角三角形;③如图4中,当点GB重合时,四边形GCHA′是矩形,此时△CHA′是直角三角形.

解:(1)对于y=﹣x2x+y=0,可得﹣x2x+=0,

解得x=﹣31,

A(﹣3,0),B(1,0),

AB=4,

抛物线的对称轴x=﹣=﹣=﹣1.

(2)如图1中,设E(m,﹣m2m+),

SAED=SAOD+SAEO+SECO﹣SECD

=×3×+×3×(﹣m2m+)+××(﹣m)﹣×2×(﹣m)

=﹣(m+2+

<0,

m=﹣时,SAED有最大值,最大值为

(3)①如图2中,连接BC.

ACGH,AC=GH,

∴四边形ACHG是平行四边形,

CHAB,

当点A′y轴上时,∠HCA′=90°满足条件.

AO=3,OC=,OB=1,

tanCAO==,tanBCO==

∴∠CAO=30°,OCB=30°,

∴∠ACO=60°,

∴∠ACB=ACO+OCB=90°,

当点A′y轴上时,∠ACG=A′CG=30°,

OG=OCtan30°=1,

G(﹣1,0).

②如图3中,当点G与点O重合时,易证四边形GCHA′是矩形,此时CHA′是直角三角形;

③如图4中,当点GB重合时,四边形GCHA′是矩形,此时CHA′是直角三角形,G(1,0),

综上所述,满足条件点G坐标为(﹣1,0)或(0,0)或(1,0).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知EF//AD 1=∠2 BAC70°.求∠AGD的度数(将以下过程填写完整)

解:∵EF//AD

∴∠2

又∵∠1=∠2

∴∠1=∠3

AB//

∴∠BAC 180°

又∵∠BAC70°

∴∠AGD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一列数:1―23―45―67将这列数排成下列形式:

11

2行 -2  3

3行 -4  5  -6

47  -8   9  -10

511 12  13  -14  15

… …

按照上述规律排下去,那么第10行从左边数第5个数等于

A.50B.50C.60D.60

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知

①若,求的值;

②若,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,点P是直角三角形ABC斜边AB上一动点(不与A,B重合),分别过AB向直线CP作垂线,垂足分别为EFQ为斜边AB的中点。

(1)如图1,当点P与点Q重合时,AEBF的位置关系是___,QEQF的数量关系是___;

(2)如图2,当点P在线段AB上不与点Q重合时,试判断QEQF的数量关系,并给予证明;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,正方形ABCD和正方形EFGC面积分别为6416

1)请写出点AEF的坐标;

2)求SBDF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知∠α的顶点在正n边形的中心点O处,∠α绕着顶点O旋转,角的两边与正n 形的两边分别交于点M、N,α与正n边形重叠部分面积为S.

(1)当n=4,边长为2,α=90°时,如图(1),请直接写出S的值;

(2)当n=5,α=72°时,如图(2),请问在旋转过程中,S是否发生变化?并说明理由;

(3)当n=6,α=120°时,如图(3),请猜想S是原正六边形面积的几分之几(不必说明理由).若∠α的平分线与BC边交于点P,判断四边形OMPN的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知ABC

1)如图(1),∠C>B,若 ADBC 于点 DAE 平分∠BAC,你能找出∠EAD 与∠B,∠C 之间的数量关系吗?并说明理由.

2)如图(2),AE 平分∠BACF AE 上一点,FMBC 于点 M,∠EFM 与∠B,∠C之间有何数量关系?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】南中国海是中国固有领海,我渔政船经常在此海域执勤巡察.一天我渔政船停在小岛A北偏西37°方向的B处,观察A岛周边海域.据测算,渔政船距A岛的距离AB长为10海里.此时位于A岛正西方向C处的我渔船遭到某国军舰的袭扰,船长发现在其北偏东50°的方向上有我方渔政船,便发出紧急求救信号.渔政船接警后,立即沿BC航线以每小时30海里的速度前往救助,问渔政船大约需多少分钟能到达渔船所在的C处?

(参考数据:sin37°≈0.60,cos37°≈0.80,sin50°≈0.77,cos50°≈0.64,sin53°≈0.80,cos53°≈0.60,sin40°≈0.64,cos40°≈0.77)

查看答案和解析>>

同步练习册答案