已知关于x的一元二次方程x2-(2k+1)x+k2+k=0.
(1)求证:方程
有两个不相等的实数根.
(2)若△ABC的两边AB,AC的长是方程的两个实数根,第三边BC的长为5.当△ABC是等腰三角形时,求k的值.
分析:(1)证明这个一元二次方程的根的判别式大于0,根据一元二次
方程的根的判别式的性质得到这个方程有两个不相
等的实数根;(2)求出方程的根,根据等腰三角形的判定分类求解.
(1)证明:∵ 关于x的一元二次方程x2-(2k+1)x+
k2+k=0中,a=1
,b=-(2k+1),c=k2+k,
∴ Δ=b2-4ac=[-(2k+1)]2-4×1×(k2+k)=1>0.
∴ 方程有两个不相等的实数根.
(2)解:∵ 由x2-(2k+1)x+k2+k=0,得(x-k)[x-(k+1)]=0,
∴ 方程的两个不相等的实数根为x1=k,x2=k+1.
∵ △ABC的两边AB,AC的长是方程的两个实数根,第三边BC的长为5,
∴ 有如下两种情况:
情况1:x1=k=5,此时k=5,满足三角形构成条件;
情况2:x2=k+1=5,此时k=4,满足三角形构成条件.
综上所述,k=4或k=5.
点拨:一元二次方程根的情况与判别式Δ的关系:
(1)Δ>0
方程有两个不相等的实数根;
(2)Δ=0
方程有两个相等的实数根;
(3)Δ<0
方程没有实数根.
科目:初中数学 来源:第23章《一元二次方程》中考题集(23):23.3 实践与探索(解析版) 题型:解答题
查看答案和解析>>
科目:初中数学 来源:2007年全国中考数学试题汇编《一元二次方程》(04)(解析版) 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com