精英家教网 > 初中数学 > 题目详情
11.已知关于x的方程x2-px+q=0的一个根是p,则下列一定成立的是(  )
A.p=0B.q=0C.p=0且q=0D.p≠0,q=0

分析 根据一元二次方程的解的定义得到p2-p2+q=0,易得q=0.

解答 解:把x=p代入方程得p2-p2+q=0,
所以q=0.
故选B.

点评 本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.

练习册系列答案
相关习题

科目:初中数学 来源:2016-2017学年江苏省苏州太仓市第二学期初一期中复习检测数学试卷(一)(解析版) 题型:解答题

,……, ,(n为正整数)

(1)试说明是8的倍数;

(2)若△ABC的三条边长分别为为正整数)

①求的取值范围.

②是否存在这样的,使得△ABC的周长为一个完全平方数,若存在,试举出一例,若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.先化简,再求值:当x=2时,求3(x+5)(x-3)-5(x-2)(x+3)的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.计算:$\sqrt{6}$×$\sqrt{12}$=6$\sqrt{3}$,$\sqrt{2b}$×$\sqrt{8b}$=4b,$\sqrt{\frac{1}{2}}$×$\sqrt{24}$=2$\sqrt{3}$.$\frac{\sqrt{10}}{\sqrt{5}}$=$\sqrt{2}$,$\frac{\sqrt{8}}{\sqrt{6}}$=$\frac{2\sqrt{3}}{3}$,$\frac{\sqrt{12a}}{\sqrt{18a}}$=$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.已知x=2+$\sqrt{3}$,y=2-$\sqrt{3}$,求下列代数式的值;
(1)x2-$\sqrt{3}$x;
(2)x2-xy+y2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.若关于x的一元二次方程(k-1)x2-x-k2+k=0的一个根为0,则k=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.两年前生产1吨某种药品的成本是5000元,现在生产1吨这种药品的成本是3200元,这种药品成本的年平均下降率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.△ABC在直角坐标系中的位置如图所示,
(1)作出△ABC关于原点O对称的△DEF,并写出D,E,F的坐标.
(2)作出△ABC关于y轴对称的△PMQ,△DEF与△PMQ之间有何关系.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.①|-45|+(-71)+|-5|+(-9)
②(-53)+(+21)-(-69)-(+37)
③-14+$\frac{1}{2}$÷[3-(-2)2]
④(-71$\frac{15}{16}$)×8
⑤($\frac{1}{2}$-$\frac{1}{3}$)÷(-$\frac{1}{6}$)+(-2)2×(-14)
⑥(-2)3×8-8×($\frac{1}{2}$)3+8÷$\frac{1}{8}$
⑦[-32×(-$\frac{1}{3}$)2-0.8]÷(-5$\frac{2}{5}$)               
⑧1$\frac{1}{2}$×$\frac{5}{7}$-(-$\frac{5}{7}$)×2$\frac{1}{2}$+(-$\frac{1}{2}$)÷1$\frac{2}{5}$.

查看答案和解析>>

同步练习册答案