精英家教网 > 初中数学 > 题目详情
14.有下列几种说法:
①两条直线相交所成的四个角中有一个是直角;
②两条直线相交所成的四个角相等;
③两条直线相交所成的四个角中有一组相邻补角相等;
④两条直线相交对顶角互补.
其中,能两条直线互相垂直的是(  )
A.①③B.①②③C.②③④D.①②③④

分析 利用直角的定义、补角的定义、对顶角的定义等知识分别判断后即可确定正确的选项.

解答 解:①两条直线相交所成的四个角中有一个是直角能得到两条直线互相垂直;
②两条直线相交所成的四个角相等能得到两条直线互相垂直;
③两条直线相交所成的四个角中有一组相邻补角相等能得到两条直线互相垂直;
④两条直线相交对顶角互补能得到两条直线互相垂直.
故选D.

点评 考查了命题与定理的知识,解题的关键是能够根据直角的定义、补角的定义及对顶角的定义进行判断,难度不大.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.如图,AB为⊙O的直径,直线CD切⊙O于点D,AM⊥CD于点M,连接AD,BD.
(1)求证:∠ADC=∠ABD;
(2)若AD=2$\sqrt{3}$,⊙O的半径为3,求MD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.解下列方程组
(1)$\left\{\begin{array}{l}{3x+4y=19}\\{x-y=4}\end{array}\right.$
(2)$\left\{\begin{array}{l}{\frac{2(x-y)}{3}-\frac{(x+y)}{4}=-\frac{1}{12}}\\{3(x+y)-2(2x-y)=3}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.在Rt△ACB中,∠C=90°,点D是AC的中点,cos∠CBD=$\frac{{\sqrt{15}}}{4}$,则sin∠ABD=$\frac{\sqrt{285}}{76}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,AD、AE分别是△ABC的中线和角平分线,AC=2,AB=5,过点C作CF⊥AE于点F,连接DF,有下列结论:
①将△ACF沿着直线AE折叠,点C怡好落在AB上;
②3<2AD<7;
③若∠B=30°,∠FCE=15°,则∠ACB=55°;
④若△ABC的面积为S,则△DFC的面积为0.15S.
其中正确的是①②④.(把所有正确结论的序号都选上)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.(1)化简(2a+1)(2a-1)-4a(a-1)
(2)先化简,再求值:(x+y)(x-y)-x(x+y)+2xy,其中x=(3-π)0,y=($\frac{1}{2}$)-1

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…按这样的运动规律,经过第2016次运动后,动点P的坐标是(2016,0).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.若x2+kx+81是完全平方式,则k的值应是±18.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.计算:
(1)${({π-3.14})^0}+{2^{-2}}+{(-3)^2}-{(\frac{1}{2})^{-2}}$
(2)${(-2x{y^2})^3}•{(-3{x^2}{y^3})^2}•(\frac{1}{4}xy)$
(3)a2•a3•a5+(-2a52-a12÷a2
(4)(2x+1)(2x-1)-4(x-1)2

查看答案和解析>>

同步练习册答案