精英家教网 > 初中数学 > 题目详情

【题目】如图,在中,点DE分别是边BCAC的中点,ADBE相交于点FG分别是线段AO

BO的中点.

求证:四边形DEFG是平行四边形;

如图2,连接CO,若,求证:四边形DEFG是菱形;

的前提下,当满足什么条件时,四边形DEFG能成为正方形?直接回答即可,不必证明

【答案】(1)见解析;(2)见解析;(3)见解析.

【解析】

(1)由三角形中位线性质得到故四边形DEFG是平行四边形;(2)同(1),由,得到菱形;(3)当时,四边形DEFG为正方形:点DE分别是边BCAC的中点,得点O的重心,证,结合平行线性质证,结合(2)可得结论.

证明:DE分别是边BCAC的中点,

FG分别是线段AOBO的中点,


四边形DEFG是平行四边形;
证明:FE分别是边OAAC的中点,



平行四边形DEFG是菱形;
时,四边形DEFG为正方形,
理由如下:DE分别是边BCAC的中点,
O的重心,






菱形DEFG为正方形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知反比例函数y= 的图象位于第二、第四象限,那么关于x的一元二次方程x2+2x+k=0的根的情况是(
A.方程有两个不想等的实数根
B.方程不一定有实数根
C.方程有两个相等的实数根
D.方程没有实数根

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①所示,空圆柱形容器内放着一个实心的“柱锥体”(由一个圆柱和一个同底面的圆锥组成的几何体).现向这个容器内匀速注水,水流速度为5cm3/s,注满为止.已知整个注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②所示.请你根据图中信息,解答下列问题:
(1)圆柱形容器的高为cm,“柱锥体”中圆锥体的高为cm;
(2)分别求出圆柱形容器的底面积与“柱锥体”的底面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的长为2 cm,对角线交于点O,以AB,AO为邻边做平行四边形AOCB,对角线交于点O,以AB、AO1为邻边做平行四边形AO1C1B,…,依此类推,则平行四边形AO6C6B的面积为cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】四边形ABCD的对角线交于点E,有AE=EC,BE=ED,以AB为直径的⊙O过点E.
(1)求证:四边形ABCD的是菱形;
(2)若CD的延长线与圆相切于点F,已知直径AB=4,求阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线经过点A(﹣1,0)和B(0,2 ),对称轴为x=

(1)求抛物线的解析式;
(2)抛物线与x轴交于另一个交点为C,点D在线段AC上,已知AD=AB,若动点P从A出发沿线段AC以每秒1个单位长度的度数匀速运动,同时另一动点Q以某一速度从B出发沿线段BC匀速运动,问是否存在某一时刻,使线段PQ被直线BD垂直平分?若存在,求出点Q的运动速度;若不存在,请说明理由.
(3)在(2)的前提下,过点B的直线l与x轴的负半轴交于点M,是否存在点M,使以A,B,M为顶点的三角形与△PBC相似?如果存在,请直接写出M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一般情况下不成立,但有些数可以使得它成立,例如: .我们称使得成立的一对数, 为“相伴数对”,记为

(1)若是“相伴数对”,求的值;

(2)写出一个“相伴数对” ,其中

(3)若是“相伴数对”,求代数式的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使∠PED=∠C.
(1)求证:PE是⊙O的切线;
(2)求证:ED平分∠BEP;
(3)若⊙O的半径为5,CF=2EF,求PD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知正方形ABCD的边长为24厘米.甲、乙两动点同时从顶点A出发,甲以2厘米/秒的速度沿正方形的边按顺时针方向移动,乙以4厘米/秒的速度沿正方形的边按逆时针方向移动,每次相遇后甲乙的速度均增加1厘米/秒且都改变原方向移动,则第四次相遇时甲与最近顶点的距离是______厘米.

查看答案和解析>>

同步练习册答案