| A. | 18.75cm2 | B. | 19.15cm2 | C. | 20cm2 | D. | 21.35cm2 |
分析 如图,首先证明BG=DG(设为λ),这是解决该题的关键性结论;在直角△ABG中,运用勾股定理列出关于λ的方程,求出λ,即可解决问题.
解答
解:如图,∵四边形ABCD为矩形,
∴∠A=90°,AD∥BC,
∴∠CBD=∠GDB;
由题意得:∠GBD=∠CBD,
∴∠GBD=∠GDB,GB=GD(设为λ),
∴AG=8-λ;由勾股定理得:
λ2=(8-λ)2+62,
解得:λ=$\frac{25}{4}$,
∴△BDG的面积=$\frac{1}{2}×\frac{25}{4}×6$
=18.75(cm2),
故选A.
点评 该题主要考查了翻折变换的性质、勾股定理等几何知识点及其应用问题;解题的关键是牢固掌握翻折变换的性质等几何知识点,这是灵活运用、解题的基础.
科目:初中数学 来源: 题型:选择题
| A. | 1组 | B. | 2组 | C. | 3组 | D. | 4组 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com