| A. | 3 | B. | 4 | C. | 5 | D. | 6 |
分析 连接OD,利用切线的性质和相似三角形△CBE∽△CDO的对应边成比例进行解答.
解答
解:如图,连接OD.
∵CD是⊙O的切线,
∴∠ODC=90°.
又∵BE作⊙O的切线,
∴∠CBE=90°且BE=ED,
∴∠CBE=∠CDO.
又∵∠BCE=∠DCO,
∴△CBE∽△CDO,
∴$\frac{CE}{CO}$=$\frac{BE}{DO}$,即$\frac{CD-BE}{BC+OB}$=$\frac{BE}{OB}$.
又∵CD=8,BE=3,
∴CE=CD-DE=CD-BE=5,
∴在直角△CBE中,利用勾股定理求得CB=4,
∴$\frac{5}{4+OB}$=$\frac{3}{OB}$,则OB=6,即该圆的半径为6.
故选:D.
点评 本题考查了切线的性质和勾股定理.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.
科目:初中数学 来源: 题型:选择题
| A. | 75×1+(120-75)x=270 | B. | 75×1+(120+75)x=270 | ||
| C. | 120(x-1)+75x=270 | D. | 120×1+(120+75)x=270 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 2个 | B. | 3个 | C. | 4个 | D. | 5个 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com