【题目】已知点A(3a﹣6,a+4),B(﹣3,2),AB∥y轴,点P为直线AB上一点,且PA=2PB,则点P的坐标为_____.
科目:初中数学 来源: 题型:
【题目】最近雾霾天气频繁,使得空气净化器得以畅销.某商场代理销售某种空气净化器,其进价是500元/台,经过市场销售后发现,当售价是1000元/台时,每月可售出50台,且售价每降低20元,每月就可多售出5台.若供货商规定这种空气净化器售价不能低于600元/台,代理销售商每月要完成不低于60台的销售任务.
(1)试确定月销售量y(台)与售价x(元/台)之间的函数关系式,并求出自变量x的取值范围.
(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB∥CD∥EF,BC∥AD,AC平分∠BAD,且与EF交于点O,那么与∠AOE相等的角有( )
A. 6个B. 5个C. 4个D. 3个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】教材在探索平方差公式时利用了面积法,面积法除了可以帮助我们记忆公式,还可以直观地推导或验证公式,俗称“无字证明”,例如,著名的赵爽弦图(如图①,其中四个直角三角形较大的直角边长都为a,较小的直角边长都为b,斜边长都为c),大正方形的面积可以表示为c2 , 也可以表示为4×ab+(a-b)2由此推导出重要的勾股定理:如果直角三角形两条直角边长为a,b,斜边长为c,则a2+b2=c2 .
(1)图②为美国第二十任总统伽菲尔德的“总统证法”,请你利用图②推导勾股定理.
(2)如图③,直角△ABC中,∠ACB=90°,AC=3cm,BC=4cm,则斜边AB上的高CD的长为多少?
(3)试构造一个图形,使它的面积能够解释(a+b)(a+2b)=a2+3ab+2b2 , 画在如图4的网格中,并标出字母a、b所表示的线段.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠B=40°,∠C=80°,按要求完成下列各题:
(1)作△ABC的高AD;
(2)作△ABC的角平分线AE;
(3)根据你所画的图形求∠DAE的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形。
(1)你认为图②中阴影部分的正方形的边长等于________.
(2)请用两种不同的方法列代数式表示图②中阴影部分的面积。
方法①___________________________________.
方法②___________________________________.
(3)观察图②,试写出,,这三个代数式之间的等量关系 .
(4)根据(3)题中的等量关系,解决如下问题:若,,则求的值。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数 y=kx+b 的图象与坐标轴分别交于 A、B 两点,与反比例函数 y= 的图象在第一象限的交点为点 C,CD⊥x 轴,垂足为点 D,若OB=3,OD=6,△AOB 的面积为 3.
(1)求一次函数与反比例函数的解析式;
(2)直接写出当 x>0 时,kx+b﹣>0 的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,△ABC的三个顶点坐标分别为A(-3,0),B(-3,-4),C(-1,-4).
(1)求△ABC的面积;
(2)在图中作出△ABC关于x轴对称的图形△DEF,点A、B、C的对称点分别为D、E、F,并写出D、E、F的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com