精英家教网 > 初中数学 > 题目详情

【题目】如图,在的正方形网格中,每个小正方形的边长都为1,网格中有一个格点(即三角形的顶点都在格点上).

1)在图中作出关于直线l对称的;(要求ABC相对应)

2)作出绕点C顺时针方向旋转90°后得到的

3)在(2)的条件下求出线段CB在旋转中所扫过的面积.(结果保留π)

【答案】1)见解析(2)见解析(3π.

【解析】

1)根据网格结构找出点ABC关于直线l的对称点的位置,然后顺次连接即可;

2)根据网格结构找出点AB绕点C顺时针方向旋转90°后的AB的位置,然后与点C顺次连接即可;

3)利用勾股定理列式求出BC,再根据扇形的面积公式列式计算即可得解.

(1) 如图所示;

(2) 如图所示;

(3)根据勾股定理,BC== ,

所以,线段CB旋转到CB2所扫过的面积S= =π.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在一条笔直的东西向海岸线l上有一长为1.5km的码头MN和灯塔C,灯塔C距码头的东端N20km.一轮船以36km/h的速度航行,上午1000A处测得灯塔C位于轮船的北偏西30°方向,上午1040B处测得灯塔C位于轮船的北偏东60°方向,且与灯塔C相距12km.

(1)若轮船照此速度与航向航向,何时到达海岸线?

(2)若轮船不改变航向,该轮船能否停靠在码头?请说明理由(参考数据: ≈1.4 ≈1.7)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在平面直角坐标系中,抛物线轴交于两点(点在点左侧),与轴交于点,顶点为

1)如图,直线下方抛物线上的一个动点(不与点重合),过点于点,当最大时,点为线段一点(不与点重合),当的值最小时,求点的坐标;

2)将沿直线翻折得,再将绕着点顺时针旋转,在旋转过程中直线与直线相交于点,与轴相交于点,当是等腰三角形时,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,从点看一山坡上的电线杆,观测点的仰角是,向前走到达点, 测得顶端点和杆底端点的仰角分别是,则该电线杆的高度(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中,,将绕点按逆时针方向旋转,得到

1)如图 1,当点在线段的延长线上时,求的度数;

2)如图 2,连接.若的面积为 3,求的面积;

3)如图 3,点为线段中点,点是线段上的动点,在绕点按逆时针方向旋转的过程中,点的对应点是点,求线段长度的最大值与最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,过点的直线与直线相交于点,动点沿路线运动.

1)求直线的解析式;

2)设的面积,点的横坐标为,求出的关系式;

3)是否存在点,使是直角三角形?若存在,直接写出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料:数学课上,老师出示了这样一个问题:

如图1,在等边中,点上,且,直线点,交延长线于点,且,探究线段之间的数量关系,并证明.

某学习小组的同学经过思考,交流了自己的想法:

小明:通过观察和度量,发现存在某种数量关系

小强:通过观察和度量,发现图1中有一条线段与相等

小伟:通过构造三角形,证明三角形全等,进而可以得到线段之间的数量关系

……

老师:保留原题条件,再过点相交于点(如图2)如果给出的值,那么可以求出的值

请回答:

1)在图1中找出数量关系,并证明;

2)在图1中找出与线段相等的线段,并证明;

3)探究线段之间的数量关系,并证明;

4)若,求的值(用含的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小文同学统计了某栋居民楼中全体居民每周使用手机支付的次数,并绘制了直方图.根据图中信息,下列说法错误的是(  )

A.这栋居民楼共有居民125

B.每周使用手机支付次数为2835次的人数最多

C.有的人每周使用手机支付的次数在3542

D.每周使用手机支付不超过21次的有15

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:关于x的方程

(1)求证:m取任何值时,方程总有实根.

(2)若二次函数的图像关于y轴对称.

a、求二次函数的解析式

b、已知一次函数,证明:在实数范围内,对于同一x值,这两个函数所对应的函数值均成立.

(3)在(2)的条件下,若二次函数的象经过(-5,0),且在实数范围内,对于x的同一个值,这三个函数所对应的函数值均成立,求二次函数的解析式.

查看答案和解析>>

同步练习册答案