精英家教网 > 初中数学 > 题目详情

【题目】1)阅读理解

利用旋转变换解决数学问题是一种常用的方法.如图,点是等边三角形内一点,.的度数.

为利用已知条件,不妨把绕点顺时针旋转,连接,则的长为_______;在中,易证,且的度数为________,综上可得的度数为_______

2)类比迁移

如图,点是等腰内的一点,.的度数;

3)拓展应用

如图,在四边形中,,请直接写出的长.

【答案】12, 30°90°;(290°;(32.

【解析】

1)由旋转性质、等边三角形的判定可知CP′P是等边三角形,由等边三角形的性质知∠CP′P=60°,根据勾股定理逆定理可得AP′P是直角三角形,继而可得答案.

2)如图2,把BPC绕点C顺时针旋转90°AP'C,连接PP′,同理可得CP′P是等腰直角三角形和AP′P是等腰直角三角形,所以∠APC=90°

3)如图3,将ABD绕点A逆时针旋转得到ACG,连接DG.则BD=CG,根据勾股定理求CG的长,就可以得BD的长.

1)把BPC绕点C顺时针旋转60°AP'C,连接PP′(如图1).

由旋转的性质知CP′P是等边三角形;

P′A=PB=、∠CP′P=60°P′P=PC=2

AP′P中,∵AP2+P′A2=12+2=4=PP′2

∴△AP′P是直角三角形;

∴∠P′AP=90°

PA=PC

∴∠AP′P=30°

∴∠BPC=CP′A=CP′P+AP′P=60°+30°=90°

2)如图2,把BPC绕点C顺时针旋转90°AP'C,连接PP′

由旋转的性质知CP′P是等腰直角三角形;

P′C=PC=1,∠CPP′=45°P′P=PB=AP'=

AP′P中,∵AP'2+P′P2=2+2=4=AP2

∴△AP′P是等腰直角三角形;

∴∠AP′P=90°

∴∠APP'=45°

∴∠APC=APP'+CPP'=45°+45°=90°

3)如图3

AB=AC

ABD绕点A逆时针旋转得到ACG,连接DG.则BD=CG

∵∠BAD=CAG

∴∠BAC=DAG

AB=ACAD=AG

∴∠ABC=ACB=ADG=AGD

∴△ABC∽△ADG

AD=2AB

DG=2BC=10

AAEBCE

∵∠BAE+ABC=90°,∠BAE=ADC

∴∠ADG+ADC=90°

∴∠GDC=90°

CG=

BD=CG=2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.

1)现该商场要保证每天盈利6 000元,同时又要顾客得到实惠,那么每千克应涨价多少元?

2)若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:

(1)这次活动共调查了   人;在扇形统计图中,表示支付宝支付的扇形圆心角的度数为   

(2)将条形统计图补充完整.观察此图,支付方式的众数   ”;

(3)在一次购物中,小明和小亮都想从微信”、“支付宝”、“银行卡三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校为了了解九年级学生寒假的阅读情况,随机抽取了该年级的部分学生进行调查,统计了他们每人的阅读本数,设每名学生的阅读本数为n,并按以下规定分为四档:当n3时,为偏少;当3≤n5时,为一般;当5≤n8时,为良好;当n≥8时,为优秀.将调查结果统计后绘制成不完整的统计图表:

阅读本数n(本)

1

2

3

4

5

6

7

8

9

人数(名)

1

2

6

7

12

x

7

y

1

请根据以上信息回答下列问题:

1)分别求出统计表中的xy的值;

2)求扇形统计图中优秀类所在扇形的圆心角的度数;

3)如果随机去掉一个数据,求众数发生变化的概率,并指出众数变化时,去掉的是哪个数据.

[Failed to download image : http://192.168.0.10:8086/QBM/2019/5/21/2208296361205760/2209339150721024/STEM/fd85c35161634f71b20809e4321f104b.png]

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长是2,点ECD边的中点,点F是边BC上不与点BC重合的一个动点,把∠C沿直线EF折叠,使点C落在点C′处.当ADC′为等腰三角形时,FC的长为_____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD放置在平面直角坐标系xOy中,已知A-20),B20),D03),反比例函数yx0)的图象经过点C

1)求此反比例函数的解析式;

2)问将平行四边形ABCD向上平移多少个单位,能使点B落在双曲线上?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O的半径是2,弦AB=,点C为是优弧AB上一个动点,BDBC交直线AC于点D,则ABD的面积的最大值为___________ .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】重庆某中学组织七、八、九年级学生参加“直辖20年,点赞新重庆”作文比赛,该校将收到的参赛作文进行分年级统计,绘制了如图1和如图2两幅不完整的统计图,根据图中提供的信息完成以下问题.

(1)扇形统计图中九年级参赛作文篇数对应的圆心角是 度,并补全条形统计图;

(2)经过评审,全校有4篇作文荣获特等奖,其中有一篇来自七年级,学校准备从特等奖作文中任选两篇刊登在校刊上,请利用画树状图或列表的方法求出七年级特等奖作文被选登在校刊上的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线AB经过⊙O上的点C,且OA=OBCA=CB.

(1)求证:直线AB是⊙O的切线;

(2)若∠A=30°AC=6,求⊙O的周长;

(3)(2)的条件下,求阴影部分的面积.

查看答案和解析>>

同步练习册答案