精英家教网 > 初中数学 > 题目详情
14.在△ABC中,sinA=$\frac{1}{2}$,AB=8,BC=6,则AC=$2\sqrt{5}+4\sqrt{3}或4\sqrt{3}-2\sqrt{5}$.

分析 分∠C为锐角和∠C为钝角两种情况,先在Rt△ABD中,求得BD=ABsinA=4、AD=$\sqrt{A{B}^{2}-A{D}^{2}}$=4$\sqrt{3}$,再在Rt△BCD中,求得CD=$\sqrt{B{C}^{2}-B{D}^{2}}$=2$\sqrt{5}$,结合图象可得答案.

解答 解:①当∠C为锐角时,如图1,

过点B作BD⊥AC于点D,
在Rt△ABD中,∵BD=ABsinA=8×$\frac{1}{2}$=4,
∴AD=$\sqrt{A{B}^{2}-A{D}^{2}}$=4$\sqrt{3}$,
在Rt△BCD中,∵CD=$\sqrt{B{C}^{2}-B{D}^{2}}$=$\sqrt{{6}^{2}-{4}^{2}}$=2$\sqrt{5}$,
∴AC=AD+CD=4$\sqrt{3}+$2$\sqrt{5}$;
②当∠C为钝角时,如图2,

过点B作BD⊥AC,交AC延长线于点D,
此时AC=AD-CD=4$\sqrt{3}$-2$\sqrt{5}$,
故答案为:$2\sqrt{5}+4\sqrt{3}或4\sqrt{3}-2\sqrt{5}$.

点评 本题主要考查解直角三角形,熟练掌握三角函数的定义与勾股定理及分类讨论思想是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.学校团支部将若干本书分给某班同学,每人6本则余18本;每人7本则少24本.求该班有学生多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.若a、b、c均为不等于1的正数,且a-2=b3=c6,求abc的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.已知点A(x1,y1),点B(x2,y2)在直线y=kx+b(k<0)上,且x1y1=x2y2=k,若y1y2=-6,则k的值等于-$\sqrt{6}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.计算:$\sqrt{8}$-|-3$\sqrt{2}$|-($\frac{1}{2}$)-1+2cos45°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,反比例函数y=$\frac{3}{x}$的图象与一次函数y=x+2的图象交于A、B两点.
(1)当x取何值时,反比例函数的值小于一次函数的值.
(2)在双曲线上找一点C,使∠BAC为直角,求点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.如果|3x+2y+5|+(2x-7y-15)2=0,则x-y的值是$\left\{\begin{array}{l}{x=-\frac{1}{5}}\\{y=-\frac{11}{5}}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.【问题情境】(1)如图1,△ABC、△ADE都是等腰直角三角形,连接CE、BE,F为CE的中点,连接DF,试探究DF和BE的数量关系;
【猜想证明】(2)如图2,某数学兴趣小组在探究DF和BE的数量关系时,运用“从特殊到一般”的数学思想,通过验证得出如下结论:当点D在AC边上时,DF=$\frac{1}{2}$BE,当点D在AB边上时,结论DF=$\frac{1}{2}$BE还成立吗?请给出证明;
【拓展延伸】(3)试验发现:不论点D在什么位置,总有DF=$\frac{1}{2}$BE,试在一般情况下(如图3)证明这个结论.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.先化简,再求代数式($\frac{2-2x}{x+1}$+x-1)÷$\frac{{x}^{2}-x}{x+1}$的值,其中x=tan30°.

查看答案和解析>>

同步练习册答案