【题目】学校为了解九年级学生对“八礼四仪”的掌握情况,对该年级的500名同学进行问卷测试,并随机抽取了10名同学的问卷,统计成绩如下:
得分 | 10 | 9 | 8 | 7 | 6 |
人数 | 3 | 3 | 2 | 1 | 1 |
(1)计算这10名同学这次测试的平均得分;
(2)如果得分不少于9分的定义为“优秀”,估计这 500名学生对“八礼四仪”掌握情况优秀的人数;
(3)小明所在班级共有40人,他们全部参加了这次测试,平均分为7.8分.小明的测试成绩是8分,小明说,我的测试成绩在班级中等偏上,你同意他的观点吗?为什么?
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线与x轴交于点A,与y轴交于点B,点C是AB的中点,∠ECD绕点C按顺时针旋转,且∠ECD=45°,∠ECD的一边CE交y轴于点F,开始时另一边CD经过点O,点G坐标为(-2,0),当∠ECD旋转过程中,射线CD与x轴的交点由点O到点G的过程中,则经过点B、C、F三点的圆的圆心所经过的路径长为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知D是等边△ABC边AB上的一点,现将△ABC折叠,使点C与D重合,折痕为EF,点E、F分别在AC和BC上.如果AD:DB=1:2,则CE:CF的值为____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若整数a使关于x的分式方程=2有整数解,且使关于x的不等式组至少有4个整数解,则满足条件的所有整数a的和是( )
A.﹣14B.﹣17C.﹣20D.﹣23
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平行四边形ABCD中,点E是AD边上的点,连接BE.
(1)如图1,若BE平分∠ABC,BC=8,ED=3,求平行四边形ABCD的周长;
(2)如图2,点F是平行四边形外一点,FB=CD.连接BF、CF,CF与BE相交于点G,若∠FBE+∠ABC=180°,点G是CF的中点,求证:2BG+ED=BC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知函数y=ax2+bx+c(a≠0,a、b、c为常数)的图像经过点A(-1,0)、B(0,2).
(1)b= (用含有a的代数式表示),c= ;
(2)点O是坐标原点,点C是该函数图像的顶点,若△AOC的面积为1,则a= ;
(3)若x>1时,y<5.结合图像,直接写出a的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c(a≠0)中,函数y与自变量x的部分对应值如下表:
(1)求该二次函数的表达式;
(2)该二次函数图像关于x轴对称的图像所对应的函数表达式 ;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:△ABC是等腰直角三角形,∠BAC=90°,将△ABC绕点C顺时针方向旋转得到△A′B′C,记旋转角为α,当90°<α<180°时,作A′D⊥AC,垂足为D,A′D与B′C交于点E.
(1)如图1,当∠CA′D=15°时,作∠A′EC的平分线EF交BC于点F.
①写出旋转角α的度数;
②求证:EA′+EC=EF;
(2)如图2,在(1)的条件下,设P是直线A′D上的一个动点,连接PA,PF,若AB=,求线段PA+PF的最小值.(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O是△ABC的外接圆,AB为直径,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC分别交AC的延长线于点E,交AB的延长线于点F.
(1)求证:EF是⊙O的切线;
(2)若AC=8,CE=4,求弧BD的长.(结果保留π)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com