精英家教网 > 初中数学 > 题目详情

【题目】再读教材:

宽与长的比是 (约为0.618)的矩形叫做黄金矩形,黄金矩形给我们以协调,匀称的美感.世界各国许多著名的建筑.为取得最佳的视觉效果,都采用了黄金矩形的设计,下面我们用宽为2的矩形纸片折叠黄金矩形.(提示; MN=2)

第一步,在矩形纸片一端.利用图①的方法折出一个正方形,然后把纸片展平.

第二步,如图②.把这个正方形折成两个相等的矩形,再把纸片展平.

第三步,折出内侧矩形的对角线 AB,并把 AB折到图③中所示的AD处,

第四步,展平纸片,按照所得的点D折出 DE,使 DEND,则图④中就会出现黄金矩形,

问题解决:

(1)图③中AB=________(保留根号);

(2)如图③,判断四边形 BADQ的形状,并说明理由;

(3)请写出图④中所有的黄金矩形,并选择其中一个说明理由.

(4)结合图④.请在矩形 BCDE中添加一条线段,设计一个新的黄金矩形,用字母表示出来,并写出它的长和宽.

【答案】(1);(2)见解析;(3) 见解析; (4) 见解析.

【解析】1)由勾股定理计算即可

2)根据菱形的判定方法即可判断

3)根据黄金矩形的定义即可判断

4)如图④1在矩形BCDE上添加线段GH使得四边形GCDH为正方形此时四边形BGHE为所求是黄金矩形

1)如图3中.在RtABCAB===

故答案为:

2)结论四边形BADQ是菱形.理由如下

如图③中,∵四边形ACBF是矩形BQAD

ABDQ∴四边形ABQD是平行四边形由翻折可知AB=AD∴四边形ABQD是菱形.

3)如图④中黄金矩形有矩形BCDE矩形MNDE

AD=AN=AC=1CD=ADAC=1

BC=2=∴矩形BCDE是黄金矩形.

==∴矩形MNDE是黄金矩形.

4)如图④1在矩形BCDE上添加线段GH使得四边形GCDH为正方形此时四边形BGHE为所求是黄金矩形.

GH=1HE=3

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,E为弦AC的延长线上一点,DE与⊙O相切于点D,且DEAC,连结OD,若AB=10,AC=6,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点DEF分别是△ABC的边ABACBC上的点,DEBCDFAC

1)如图1,点G是线段FD延长线上一点,连接EG,∠CEG的平分线EMAB于点M,交FD于点N.则∠A,∠AME,∠CEG之间存在怎样的数量关系?请写出证明过程;

2)如图2,在(1)的条件下,若EG平分∠AED,∠AME35°,且∠EDF﹣∠A30°,求∠C的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】边长为2的正方形ABCDEAB的中点,P在射线DC上从D出发以每秒1个单位长度的速度运动,PPFDE,当运动时间为__________秒时,以点PFE为顶点的三角形与AED相似

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在(

A.在∠A、∠B两内角平分线的交点处

B.ACBC两边垂直平分线的交点处

C.ACBC两边高线的交点处

D.ACBC两边中线的交点处

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点BFCE在同一直线上,ACDF相交于点G,且△ABC≌△DEF

(1)若△ABC的周长为12cmAB=3cmBC=4cm,求DF的长.

(2)DEBC与点E,∠A65°,求∠AGF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知长方形ABCD中,∠A=D=B=C=90,EAD上的一点,FAB上的一点,EFEC,且EFECDE=4cm.

(1)求证:AF=DE.

(2)AD+DC=18,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:是长方形纸片ABCD折叠的情况,纸片的宽度AB=8cm,长AD=10cmAD沿点A对折,点D正好落在BC上的M处,AE是折痕.

1)求CM的长;

2)求梯形ABCE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,△ABC∠ACB=90°AC=5DE⊥BDBC=BD∠ABE=∠CBD.

1)求证:△ABC≌△EBD

2)延长ACDEF点,若BCBDCF=4,求EF的长度.

查看答案和解析>>

同步练习册答案