精英家教网 > 初中数学 > 题目详情

【题目】如图,点BFCE在同一直线上,ACDF相交于点G,且△ABC≌△DEF

(1)若△ABC的周长为12cmAB=3cmBC=4cm,求DF的长.

(2)DEBC与点E,∠A65°,求∠AGF的度数.

【答案】(1)5(2)50°.

【解析】

1)由全等三角形性质,得DE=AB=3EF=BC=4,即可求得DF的长度;

2)由全等三角形性质,则∠D=A=65°,∠DFE=ACB=25°,有外角性质,得到∠AGF的度数.

解:(1)∵△ABC≌△DEF

DE=AB=3EF=BC=4

DF=12-3-4=5

2)∵△ABC≌△DEF

∴∠D=A=65°,∠DFE=ACB

DEBC

∴∠E=90°,

∴∠DFE=180°-90°-65°=25°,

∴∠DFE=ACB=25°,

∴∠AGF=.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,对角线AC的垂直平分线交AD、BC于点E、F,AC与EF交于点O,连结AF、CE

1求证:四边形AFCE是菱形;

2若AB=3,AD=4,求菱形AFCE的边长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,甲、乙两位同学在长方形的场地ABCD上绕着四周跑步,甲沿着ADCBA方向循环跑步,同时乙沿着BCDAB方向循环跑步,AB30米,BC50米,若甲速度为2/秒,乙速度3/秒.

1)设经过的时间为t秒,则用含t的代数式表示甲的路程为 米;

2)当甲、乙两人第一次相遇时,求所经过的时间t为多少秒?

3)若甲改为沿着ABCDA的方向循环跑步,而乙仍按原来的方向跑步,两人的速度不变,求经过多少秒,乙追上甲?

4)在(3)的条件下,当乙第一次追上甲后继续跑步,则最少再经过秒乙又追上甲,这时两人所处的位置在点P;直接写出的值,在图中标出点P,不要求书写过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,长方形ABCD中,∠DAB=∠B=∠DCB=∠D90°,ADBC6ABCD10.点E为射线DC上的一个动点,把△ADE沿直线AE翻折得△ADE

1)当D′点落在AB边上时,∠DAE   °;

2)如图2,当E点与C点重合时,DCAB交点F

①求证:AFFC;②求AF长.

3)连接DB,当∠ADB90°时,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】再读教材:

宽与长的比是 (约为0.618)的矩形叫做黄金矩形,黄金矩形给我们以协调,匀称的美感.世界各国许多著名的建筑.为取得最佳的视觉效果,都采用了黄金矩形的设计,下面我们用宽为2的矩形纸片折叠黄金矩形.(提示; MN=2)

第一步,在矩形纸片一端.利用图①的方法折出一个正方形,然后把纸片展平.

第二步,如图②.把这个正方形折成两个相等的矩形,再把纸片展平.

第三步,折出内侧矩形的对角线 AB,并把 AB折到图③中所示的AD处,

第四步,展平纸片,按照所得的点D折出 DE,使 DEND,则图④中就会出现黄金矩形,

问题解决:

(1)图③中AB=________(保留根号);

(2)如图③,判断四边形 BADQ的形状,并说明理由;

(3)请写出图④中所有的黄金矩形,并选择其中一个说明理由.

(4)结合图④.请在矩形 BCDE中添加一条线段,设计一个新的黄金矩形,用字母表示出来,并写出它的长和宽.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】201944日,中国国际女足锦标赛半决赛在武汉进行,这场由中国队迎战俄罗斯队的比赛牵动着众多足球爱好者的心.在未开始检票入场前,已有1200名足球爱好者排队等待入场.假设检票开始后,每分钟赶来的足球爱好者人数是固定的,1个检票口每分钟可以进入40人.如果4个检票口同时检票,15分钟后排队现象消失;如果7个检票口同时检票,_____分钟后排队现象消失.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下面是按规律排列的一列式子:

1个式子:

2个式子:

3个式子:

……

1)分别计算出这三个式子的结果;

2)请按规律写出第2019个式子的形式(中间部分用省略号,两端部分必须写详细);

3)计算第2019个式子的结果.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】筐白菜,以每筐千克为标准,超过或不足的分别用正、负来表示,记录如下:

与标准质量的差单位:千克

筐 数

(1)与标准质量比较,筐白菜总计超过或不足多少千克?

(2)若白菜每千克售价元,则出售这筐白菜可卖多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P是正方形ABCD内的一点,连接CP,将线段CP绕点C顺时针旋转90°,得到线段CQ,连接BP,DQ.

(1)如图a,求证:BCP≌△DCQ;

(2)如图,延长BP交直线DQ于点E.

如图b,求证:BEDQ;

如图c,若BCP为等边三角形,判断DEP的形状,并说明理由;

若正方形ABCD的边长为10,DE=2,PB=PC,直接写出线段PB的长.

查看答案和解析>>

同步练习册答案