【题目】如图1,长方形ABCD中,∠DAB=∠B=∠DCB=∠D=90°,AD=BC=6,AB=CD=10.点E为射线DC上的一个动点,把△ADE沿直线AE翻折得△AD′E.
(1)当D′点落在AB边上时,∠DAE= °;
(2)如图2,当E点与C点重合时,D′C与AB交点F,
①求证:AF=FC;②求AF长.
(3)连接D′B,当∠AD′B=90°时,求DE的长.
【答案】(1)45;(2)①见解析;②AF=6.8;(3)DE=2或18.
【解析】
(1)由△ADE≌△AD′E知∠DAE=∠D′AE,结合D′点落在AB边上知∠DAE+∠D′AE=90°,从而得出答案;
(2)①由折叠得出∠ACD=∠ACD′,再由AB∥CD得出∠ACD=∠BAC,从而得知∠ACD′=∠BAC,据此即可得证;
②设AF=FC=x,则BF=10﹣x,在Rt△BCF中,由BF2+BC2=CF2得到关于x的方程,解之可得;
(3)分两种情况:点E在DC线段上,点E为DC延长线上的一点,进一步分析探讨得出答案即可.
解:(1)由题意知△ADE≌△AD′E,
∴∠DAE=∠D′AE,
∵D′点落在AB边上时,∠DAE+∠D′AE=90°,
∴∠DAE=∠D′AE=45°,
故答案为:45;
(2)①如图2,由题意知∠ACD=∠ACD′,
∵四边形ABCD是矩形,
∴AB∥CD,
∴∠ACD=∠BAC,
∴∠ACD′=∠BAC,
∴AF=FC;
②设AF=FC=x,则BF=10﹣x,
在Rt△BCF中,由BF2+BC2=CF2得(10﹣x)2+62=x2,
解得x=6.8,即AF=6.8;
(3)如图3,
∵△AD′E≌△ADE,
∴∠AD′E=∠D=90°,
∵∠AD′B=90°,
∴B、D′、E三点共线,
又∵△ABD′∽△BEC,AD′=BC,
∴△ABD′≌△BEC,
∴BE=AB=10,
∵BD′===8,
∴DE=D′E=10﹣8=2;
如图4,
∵∠ABD″+∠CBE=∠ABD″+∠BAD″=90°,
∴∠CBE=∠BAD″,
在△ABD″和△BEC中,
∵,
∴△ABD″≌△BEC,
∴BE=AB=10,
∴DE=D″E=8+10=18.
综上所知,DE=2或18.
科目:初中数学 来源: 题型:
【题目】如图,两直线AB,CD相交于点O,已知OE平分∠BOD,且∠AOC:∠AOD=3:7,
(1)求∠DOE的度数;
(2)若OF⊥OE,求∠COF的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AD⊥BC于点D,∠BAD=∠CAD,BE平分∠ABC交AC于E,∠C=42°,若点F为线段BC上的一点,当△EFC为直角三角形时,∠BEF的度数为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】先尺规作图,后进行计算:如图,△ABC中,∠A=105°.
(1)试求作一点P,使得点P到B、C两点的距离相等,并且到∠ABC两边的距离相等(尺规作图,不写作法,保留作图痕迹).
(2)在(1)的条件下,若∠ACP=30°,则∠PBC的度数为 °.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】边长为2的正方形ABCD中E是AB的中点,P在射线DC上从D出发以每秒1个单位长度的速度运动,过P做PF⊥DE,当运动时间为__________秒时,以点P、F、E为顶点的三角形与△AED相似
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知轮船A在灯塔P的北偏东30°的方向上,轮船B在灯塔P的南偏东70°的方向上.
(1)求从灯塔P看两轮船的视角(即∠APB)的度数?
(2)轮船C在∠APB的角平分线上,则轮船C在灯塔P的什么方位?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点B,F,C,E在同一直线上,AC,DF相交于点G,且△ABC≌△DEF
(1)若△ABC的周长为12cm,AB=3cm,BC=4cm,求DF的长.
(2)若DE⊥BC与点E,∠A=65°,求∠AGF的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】探索n×n的正方形钉子板上(n是钉子板每边上的钉子数,每边上相邻钉子间的距离为1),连接任意两个钉子所得到的不同长度值的线段种数:
当n=2时,钉子板上所连不同线段的长度值只有1与,所以不同长度值的线段只有2种,若用S表示不同长度值的线段种数,则S=2;
当n=3时,钉子板上所连不同线段的长度值只有1, ,2, ,2五种,比n=2时增加了3种,即S=2+3=5.
(1)观察图形,填写下表:
钉子数(n×n) | S值 |
2×2 | 2 |
3×3 | 2+3 |
4×4 | 2+3+(____) |
5×5 | (________) |
(2)写出(n-1)×(n-1)和n×n的两个钉子板上,不同长度值的线段种数之间的关系;(用式子或语言表述均可).
(3)对n×n的钉子板,写出用n表示S的代数式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O的半径为6cm,B为⊙O外一点,OB交⊙O于点A,AB=OA,动点P从点A出发,以π cm/s的速度在⊙O上按逆时针方向运动一周回到点A立即停止.当点P运动的时间为______时,BP与⊙O相切.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com