【题目】如图,△ABC中,AB=AC,AD是BC边上的高.点O是AC中点,延长DO到E,使OE=OD,连接AE,CE.
(1)求证:四边形ADCE是矩形;
(2)若BC=6,∠DOC=60°,求四边形ADCE的面积.
【答案】(1)证明见解析;(2)
【解析】
(1)根据平行四边形的性质得出四边形ADCE是平行四边形,根据垂直推出∠ADC=90°,根据矩形的判定得出即可;
(2)依据等腰三角形三线合一的性质可求得DC,然后证明△OCD为等边三角形,从而可求得AC的长,然后依据勾股定理可求得AD的长,最后利用矩形的面积公式求出即可.
(1)证明:∵点O是AC中点,
∴OA=OC,
又∵OE=OD,
∴四边形ADCE是平行四边形.
∵AD是BC边上的高,
∴∠ADC=90°,
∴四边形ADCE的是矩形.
(2)解:∵AD是等腰三角形BC边上的高,BC=6,
∴BD=DC=3
∵四边形ADCE的是矩形,
∴OD=OC=AC.
∵∠DOC=60°,
∴△DOC是等边三角形,
∴OC=DC=3,
∴AC=6.
在Rt△ADC中,∠ADC=90°,DC=3,AC=6,
由勾股定理得 AD=,
∴四边形ADCE的面积S=AD×DC=3×=.
科目:初中数学 来源: 题型:
【题目】如图,点O为Rt△ABC斜边AB上的一点,以OA为半径的⊙O与BC相切于点D,与AC交于点E,连接AD.
(1)求证:AD平分∠BAC;
(2)若∠BAC = 60°,OA = 2,求阴影部分的面积(结果保留π).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图1, 分别为定角(大小不会发生改变) 内部的两条动射线,与 互补,.
(1)求的度数:
(2)如图2,射线分别为的平分线,当绕着点旋转时,下列结论:①的度数不变:②的度数不变,其中只有一个是正确的,请你做出正确的选择并求值:
(3)如图3, 是外部的两条射线,且, ,当绕着点旋转时, 的大小是否会发生变化?若不变,求出其度数:若变化,说明理由,
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】[新定义]: 为数轴上三点,若点到点的距离是点到点的距离的3倍,我们就称点的幸运点.
[特例感知]
(1)如图1,点表示的数为-1,点表示的数为3.表示2的点到点的距离是3,到点的距离是1,那么点是的幸运点,
①的幸运点表示的数是________;
A.-1 B.0 C.1 D.2
②试说明的幸运点.
(2)如图2, 为数轴上两点,点所表示的数为-2,点所表示的数为4,
则的幸运点表示的数为________.
[拓展应用]
(3)如图3, 为数轴上两点,点所表示的数为-20,点所表示的数为40.有一只电子蚂蚁从点出发,以5个单位每秒的速度向左运动,到达点停止.当t为何值时,、和三个点中恰好有一个点为其余两点的幸运点?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).
(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是 .
(2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.
(3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,A(﹣2,3),B(﹣5,1),C(﹣1,0).
(1)在图中作出△ABC关于x轴的对称图形△A1B1C1;
(2)在图中作出△ABC关于原点O成中心对称的图形△A2B2C2,并写出A2点的坐标;
(3)在y轴上找一点P,使△PAC的周长最小,请直接写出点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x﹣2交于B,C两点.
(1)求抛物线的解析式及点C的坐标;
(2)求证:△ABC是直角三角形;
(3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)观察猜想:
在Rt△ABC中,∠BAC=90°,AB=AC,点D在边BC上,连接AD,把△ABD绕点A逆时针旋转90°,点D落在点E处,如图①所示,则线段CE和线段BD的数量关系是 ,位置关系是 .
(2)探究证明:
在(1)的条件下,若点D在线段BC的延长线上,请判断(1)中结论是还成立吗?请在图②中画出图形,并证明你的判断.
(3)拓展延伸:
如图③,∠BAC≠90°,若AB≠AC,∠ACB=45°,AC=,其他条件不变,过点D作DF⊥AD交CE于点F,请直接写出线段CF长度的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com