【题目】已知平面直角坐标系中,△ABC的三个顶点的坐标分别为A(2,2),B(1,﹣1),C(3,0).
![]()
(1)在图1中,画出以点O为位似中心,放大△ABC到原来的2倍的△A1B1C1;
(2)若P(a,b)是AB边上一点,平移△ABC之后,点P的对应点P'的坐标是(a+3,b﹣2),在图2中画出平移后的△A2B2C2.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(-3,2),B(-4,-3),C(-1,-1)。
![]()
(1)写出△ABC关于x轴对称的△A1B1C1 的各顶点坐标;
(2)画出△ABC关于y轴对称的△A2B2C2;
(3)求△A2B2C2的面积。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,
,
是直线
两侧的点,以
为圆心,
长为半径画弧交
于
,
两点,又分别以
,
为圆心,大于
的长为半径画弧,两弧交于点D,连接
,
,
下列结论不一定正确的是( )
![]()
A.
B.点
,
关于直线
对称
C.点
,
关于直线
对称D.
平分![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.
(1)求证:四边形ACDF是平行四边形;
(2)当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,某校有一块菱形空地ABCD,∠A=60°,AB=40m,现计划在内部修建一个四个顶点分别落在菱形四条边上的矩形鱼池EFGH,其余部分种花草,园林公司修建鱼池,草坪的造价为y(元)与修建面积s(m2)之间的函数关系如图2所示,设AE为x米.
![]()
(1)填空:ED= m,EH= m,(用含x的代数式表示);
(提示:在直角三角形中,30°角所对的直角边等于斜边的一半)
(2)若矩形鱼池EFGH的面积是300
m2,求EF的长度;
(3)EF的长度为多少时,修建的鱼池和草坪的总造价最低,最低造价为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,四边形
为菱形,点
,
的坐标分别为
、
,动点
从点
出发,以每秒
个单位的速度沿
向终点
运动,连接
并延长交
于点
,过点
作
,交
于点
,连接
,当动点
运动了
秒时.
(1)
点的坐标为________,
点的坐标为________(用含
的代数式表示);
(2)记
的面积为
,求
与
的函数关系式
,并求出当
取何值时,
有最大值,最大值是多少?
(2)在
出发的同时,有一动点
从
点开始在线段
上以每秒
个单位长度的速度向点
移动,试求当
为何值时,
与
相似.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(探究)如图①,在四边形ABCD中,∠A=∠C=90°,AD=CD,点E、F分别在边AB、BC上,ED=FD,证明:∠ADE=∠CDF.
(拓展)如图②,在菱形ABCD中,∠A=120°,点E、F分别在边AB、BC上,ED=FD.若∠EDF=30°,求∠CDF的大小.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】国家主管部门规定:从2008年6月1日起,各商家禁止向消费者免费提供一次性塑料购物袋.为了了解巴中市市民对此规定的看法,对本市年龄在16—65岁之间的居民,进行了400个随机访问抽样调查,并根据每个年龄段的抽查人数和该年龄段对此规定的支持人数绘制了下面的统计图.
![]()
根据上图提供的信息回答下列问题:
(1)被调查的居民中,人数最多的年龄段是 岁.
(2)已知被调查的400人中有83%的人对此规定表示支持,请你求出31—40岁年龄段的满意人数,并补全图b.
(3)比较21—30岁和41—50岁这两个年龄段对此规定的支持率的高低(四舍五入到1%,注:某年龄段的支持率![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com