【题目】如图,在平面直角坐标系xOy中,ABCO的顶点A,B坐标分别是(6,0),(0,4).动点P在直线OD解析式为y=x上运动.
(1)若反比例函数y=图象过C点,则m=_____.
(2)证明:OD⊥AB;
(3)当以点P为圆心、PB长为半径的⊙P随点P运动⊙P与ABCO的边所在直线相切时,请直接写出点P的坐标.
【答案】(1)﹣24;(2)见解析;(3)满足条件的P的坐标为(0,0)或(,2)或(6﹣2,9﹣3).
【解析】
(1)先求出C点的坐标,根据反比例函数y=图象过C点,代入即可解得m的值;
(2)先求出D点的坐标,D(,),根据OD2+BD2=OB2,构建直角三角形的三边满足勾股定理,可得OD⊥AB;
(3)本问分4种情况进行讨论,分别是①当⊙P与BC相切时;②当⊙P与OC相切时;③当⊙P与OA相切时;④当⊙P与AB相切时,可根据这4种情况求出点P的坐标.
(1)解:∵A(6,0),B(0,4),
∴OA=6,OB=4,
∵四边形OABC是平行四边形,
∴BC=OA=6,
∴C(﹣6,4).
∵反比例函数y=图象过C点,
∴m=﹣24,
故答案为﹣24.
(2)证明:∵A(6,0),B(0,4),
∴直线AB的解析式为y=﹣x+4,
由解得,
∴D(,),
∴BD2=()2+(4﹣)2=,OD2=()2+()2=,
∵OD2+BD2==16=OB2,
∴∠ODB=90°,
∴OD⊥AB.
(3)解:∵OP⊥AB,AB∥OC
∴OP⊥OC,设P(x,x)
①当⊙P与BC相切时,∵动点P在直线y=x上,
∴P与O重合,此时圆心P到BC的距离为OB,
∴P(0,0).
②如图1中,当⊙P与OC相切时,则OP=BP,△OPB是等腰三角形,作PE⊥y轴于E,则EB=EO,易知P的纵坐标为2,可得P(,2).
③如图2中,当⊙P与OA相切时,则点P到点B的距离与点P到x轴的距离相等,可得,
解得x=6+2或6﹣2,
∵x=6=2>OA,
∴⊙P不会与OA相切,
∴x=6=2不合题意,
∴P(6﹣2,9﹣3).
④如图3中,当⊙P与AB相切时,设线段AB与直线OP的交点为G,此时PB=PG,
∵OP⊥AB,
∴∠BGP=∠PBG=90°不成立,
∴此种情形,不存在P.
综上所述,满足条件的P的坐标为(0,0)或(,2)或(6﹣2,9﹣3).
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,对于点P(x,y)和Q(x,y′),给出如下定义:
若,则称点Q为点P的“可控变点”.
例如:点(1,2)的“可控变点”为点(1,2),点(﹣1,3)的“可控变点”为点(﹣1,﹣3).
(1)点(﹣5,﹣2)的“可控变点”坐标为 ;
(2)若点P在函数的图象上,其“可控变点”Q的纵坐标y′是7,求“可控变点”Q的横坐标;
(3)若点P在函数()的图象上,其“可控变点”Q的纵坐标y′ 的取值范围是,求实数a的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD内接于圆O ,AD、BC的延长线相交于点E,AB、DC的延长线相交于点F.
(1)若∠E=500, ∠F=400,求∠A的度数.
(2)探究∠E、∠F、∠A的关系并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】节假日期间向、某商场组织游戏,主持人请三位家长分别带自己的孩于参加游戏,A、B、C分别表示一位家长,他们的孩子分别对应的是a,b,若主持人分别从三位家长和三位孩予中各选一人参加游戏.
若已选中家长A,则恰好选中自己孩子的概率是______.
请用画树状图或列表法求出被选中的恰好是同一家庭成员的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某厂家生产一种新型电子产品,制造时每件的成本为40元,通过试销发现,销售量万件与销售单价元之间符合一次函数关系,其图象如图所示.
求y与x的函数关系式;
物价部门规定:这种电子产品销售单价不得超过每件80元,那么,当销售单价x定为每件多少元时,厂家每月获得的利润最大?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知锐角三角形ABC内接于⊙O,AD⊥BC,垂足为D.
(1)如图1, ,BD=DC,求∠B的度数;
(2)如图2,BE⊥AC,垂足为E,BE交AD于点F,过点B作BG∥AD交⊙O于点G,在AB边上取一点H,使得AH=BG.求证:△AFH是等腰三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】国务院办公厅在2015年3月16日发布了《中国足球发展改革总体方案》,这是中国足球史上的重大改革,为进一步普及足球知识,传播足球文化,我市某区在中小学举行了“足球在身边”知识竞赛,各类获奖学生人数的比例情况如图所示,其中获得三等奖的学生共50名,请结合图中信息,解答下列问题:
(1)获得一等奖的学生人数;
(2)在本次知识竞赛活动中,A,B,C,D四所学校表现突出,现决定从这四所学校中随机选取两所学校举行一场足球友谊赛,请用画树状图或列表的方法求恰好选到A,B两所学校的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com