【题目】已知抛物线y=x2+(2n﹣1)x+n2﹣1(n为常数).
(1)当该抛物线经过坐标原点,并且顶点在第四象限时,求出它所对应的函数关系式;
(2)设A是(1)所确定的抛物线上位于x轴下方、且在对称轴左侧的一个动点,过A作x轴的平行线,交抛物线于另一点D,再作AB⊥x轴于B,DC⊥x轴于C.
①当BC=1时,求矩形ABCD的周长;
②试问矩形ABCD的周长是否存在最大值?如果存在,请求出这个最大值,并指出此时A点的坐标.如果不存在,请说明理由.
【答案】(1)y=x2﹣3x;(2)①矩形ABCD的周长为6,②当x=时,矩形ABCD的周长C最大值为,此时点A的坐标为A(,).
【解析】
(1)将原点坐标代入抛物线的解析式中,即可求出n的值,然后根据抛物线顶点在第四象限将不合题意的n值舍去,即可得出所求的二次函数解析式;
(2)①先根据抛物线的解析式求出抛物线与x轴另一交点E的坐标,根据抛物线和矩形的对称性可知:OB的长,就是OE与BC的差的一半,由此可求出OB的长,即B点的坐标,然后代入抛物线的解析式中即可求出B点纵坐标,也就得出了矩形AB边的长.进而可求出矩形的周长;②思路同①可设出A点坐标(设横坐标,根据抛物线的解析式表示纵坐标),也就能表示出B点的坐标,即可得出OB的长,同①可得出BC的长,而AB的长就是A点纵坐标的绝对值,由此可得出一个关于矩形周长和A点纵坐标的函数关系式,根据二次函数的性质可得出矩形周长的最大值及对应的A的坐标.
(1)由已知条件,得n2﹣1=0
解这个方程,得n1=1,n2=﹣1
当n=1时,得y=x2+x,此抛物线的顶点不在第四象限.
当n=﹣1时,得y=x2﹣3x,此抛物线的顶点在第四象限.
∴所求的函数关系式为y=x2﹣3x;
(2)由y=x2﹣3x,
令y=0,得x2﹣3x=0,
解得x1=0,x2=3
∴抛物线与x轴的另一个交点为E(3,0)
∴它的顶点为,对称轴为直线,其大致位置如图所示,
①∵BC=1,易知OB=×(3﹣1)=1.
∴B(1,0)
∴点A的横坐标x=1,又点A在抛物线y=x2﹣3x上,
∴点A的纵坐标y=12﹣3×1=﹣2.
∴AB=|y|=|﹣2|=2.
∴矩形ABCD的周长为:2(AB+BC)=2×(2+1)=6.
②∵点A在抛物线y=x2﹣3x上,故可设A点的坐标为(x,x2﹣3x),
∴B点的坐标为(x,0).
∴BC=3﹣2x,A在x轴下方,
∴x2﹣3x<0,
∴AB=|x2﹣3x|=3x﹣x2
∴矩形ABCD的周长C=2[(3x﹣x2)+(3﹣2x)]=,
∵a=﹣2<0,抛物线开口向下,二次函数有最大值,
∴当x=时,矩形ABCD的周长C最大值为.
此时点A的坐标为A.
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,E是BC的中点,以AC为直径的⊙O与AB边交于点D,连接DE.
(1)求证:DE是⊙O的切线;
(2)若CD=6cm,DE=5cm,求⊙O直径的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】两栋居民楼之间的距离CD=30米,楼AC和BD均为10层,每层楼高3米.
(1)上午某时刻,太阳光线GB与水平面的夹角为30°,此刻B楼的影子落在A楼的第几层?
(2)当太阳光线与水平面的夹角为多少度时,B楼的影子刚好落在A楼的底部.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校决定加强羽毛球、篮球、乒乓球、排球、足球五项球类运动,每位同学必须且只能选择一项球类运动,对该校学生随机抽取进行调查,根据调查结果绘制了如图不完整的频数分布表和扇形统计图:
运动项目 | 频数人数 |
羽毛球 | 30 |
篮球 | a |
乒乓球 | 36 |
排球 | b |
足球 | 12 |
请根据以上图表信息解答下列问题:
频数分布表中的______,______;
在扇形统计图中,“排球”所在的扇形的圆心角为______度;
全校有多少名学生选择参加乒乓球运动?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在如图的方格纸中(每个小方格的边长都是1个单位)有一点O和△ABC.
(1)请以点O为位似中心,把△ABC缩小为原来的一半(不改变方向),得到△A′B′C′;
(2)请用适当的方式描述△A′B′C′的顶点A′、B′、C′的位置.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解八年级学生双休日的课外阅读情况,学校随机调查了该年级25名学生,得到了一组样本数据,其统计表如下:
八年级25名学生双休日课外阅读时间统计表
阅读时间 | 1小时 | 2小时 | 3小时 | 4小时 | 5小时 | 6小时 |
人数 | 3 | 4 | 6 | 3 | 2 |
(1)请求出阅读时间为4小时的人数所占百分比;
(2)试确定这个样本的众数和平均数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校数学课外实践小组一次活动中,测量一座楼房的高度.如图,在山坡坡脚A处测得这座楼房的楼顶B点的仰角为60°,沿山坡往上走到C处再测得B点的仰角为45°,已知山坡的坡比i=1:,OA=200m,且O、A、D在同一条直线上.
(1)求楼房OB的高度;
(2)求山坡上AC的距离(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,长方形纸片ABCD中,AB=4,BC=6,点E在AB边上,将纸片沿CE折叠,点B落在点F处,EF,CF分别交AD于点G,H,且EG=GH,则AE的长为( )
A. B. 1C. D. 2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:在平面直角坐标系中,O为坐标原点,抛物线y=ax2﹣2ax﹣3a分别交x轴于A、B两点(点A在点B的侧),与y轴交于点C,连接AC,tan∠ACO=.
(1)如图l,求a的值;
(2)如图2,D是第一象限抛物线上的点,过点D作y轴的平行线交CB的延长线于点E,连接AE交BD于点F,AE=BD,求点D的坐标;
(3)如图3,在(2)的条件下,连接AD,P是第一象限抛物线上的点(点P与点D不重合),过点P作AD的垂线,垂足为Q,交x轴于点N,点M在x轴上(点M在点N的左侧),点G在NP的延长线上,MP=OG,∠MPN﹣∠MOG=45°,MN=10.点S是△AQN内一点,连接AS、QS、NS,AS=AQ,QS=SN,求QS的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com